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Abstract

Predictive models are typically trained on historical data to
predict future outcomes. While it is commonly assumed that
training on more historical data would improve model perfor-
mance and robustness, data distribution shifts over time may
undermine these benefits. This study examines how expand-
ing historical data training windows under covariate shifts
(changes in feature distributions) and concept shifts (changes
in feature-outcome relationships) affects the performance and
algorithmic fairness of predictive models. First, we perform
a simulation study to explore scenarios with varying degrees
of covariate and concept shifts in training data. Absent dis-
tribution shifts, we observe performance gains from longer
training windows though they reach a plateau quickly; in the
presence of concept shift, performance may actually decline.
Covariate shifts alone do not significantly affect model per-
formance, but may complicate the impact of concept shifts.
In terms of fairness, models produce more biased predictions
when the magnitude of concept shifts differs across sociode-
mographic groups; for intersectional groups, these effects are
more complex and not simply additive. Second, we conduct
an empirical case study of student retention prediction, a
common machine learning application in education, using 12
years of student records from 23 minority-serving commu-
nity colleges in the United States. We find concept shifts to be
a key contributor to performance degradation when expand-
ing the training window. Moreover, model fairness is com-
promised when marginalized populations have distinct data
distribution shift patterns from their peers. Overall, our find-
ings caution against conventional wisdom that “more data is
better” and underscore the importance of using historical data
judiciously, especially when it may be subject to data distri-
bution shifts, to improve model performance and fairness.

Code — https://github.com/AEQUITAS-Lab/Distribution-
Shift- AIES-2025

Introduction

Machine learning applications have been widely deployed
to facilitate decision making in social sectors such as health-
care and education (Dixon et al. 2024; Broby 2022; Sghir,
Adadi, and Lahmer 2023). In developing machine learning
models, there is a common assumption that larger training
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datasets would lead to better performance and greater model
generalizability. The logic behind this assumption is intu-
itive: more data covers more diverse underlying patterns,
which can help reduce both bias and variance in predictive
estimates. However, this assumption depends on the con-
dition that training and test data come from similar distri-
butions, which may not be true in real-world contexts. In
fact, recent studies have already suggested that larger train-
ing datasets do not always yield better predictions (Leevy
et al. 2019). In some cases, smaller but well-curated sam-
ples can outperform large datasets when sampling is done
thoughtfully (Chang and Krosnick 2009).

In the common situation where historical data is used to
train a machine learning model to predict future outcomes,
the “more data is better” assumption means a preference for
including more data from earlier time periods in addition
to recent data to generate predictions for a given future time
point. While this strategy aims to improve model robustness,
it may introduce outdated patterns that divert from more re-
cent data points. This divergence is known as distribution
shift in statistics and machine learning research (Quifionero-
Candela et al. 2009). Two types of distribution shift are com-
monly identified: covariate shift, referring to changes in the
distribution of input features, and concept shift, referring to
changes in the relationship between inputs and outcomes.
Rigorous evaluation of the types and consequences of tem-
poral distribution shifts is of practical importance, due partly
to their potential negative impacts on model performance
and partly to storage and computing costs associated with
expanding training data.

Beyond achieving high model performance, predictions
of machine learning applications in social contexts also
ought to be algorithmically fair (Mehrabi et al. 2021; Kizil-
cec and Lee 2022), i.e., models perform equitably across dif-
ferent sociodemographic groups when making individual-
level predictions. While fairness has been a common compo-
nent of machine learning research and practice, intersection-
ality, which considers the compound and unique challenges
faced by individuals with multiple marginalized identities,
adds complexity to common fairness considerations (Kong
2022). Moreover, distribution shifts can be intertwined with
fairness challenges, as different social groups may experi-
ence different types and rates of distribution shifts in their
data.



Motivated by these concerns, this study systematically ex-
amines the impact of training data expansion under temporal
distribution shifts on the performance and fairness of ma-
chine learning models by addressing the following research
questions:

1. How does expanding the historical training window af-
fect model performance under varying degrees and types
of temporal data distribution shifts?

2. As the training window expands, how do varying degrees
and types of temporal data distribution shifts explain any
resulting performance degradation?

3. As the training window expands, how do unequal tem-
poral distribution shifts across groups affect model fair-
ness?

Our work is expected to contribute to prior research and
practice in multiple ways. First, we advance the theoreti-
cal and empirical understanding of temporal stability of ma-
chine learning models through the lens of distribution shifts.
Second, we provide empirical evidence for responsible Al
by linking temporal distribution shifts to intersectional al-
gorithmic fairness, revealing the complex ways in which
data distributions shape fairness outcomes across intersec-
tional groups. Third, we present a reproducible simulation
and evaluation framework for expanding-window training
under temporal data distribution shifts, with the potential to
guide practitioners in data collection and model maintenance
for machine learning applications.

Related Work
Distribution Shift

In supervised machine learning, data distribution shift refers
to the phenomenon that the data distribution the model is
trained on differs from the data distribution the model is
tested on. Two commonly studied types of data distribution
shift that influence model performance are covariate shift
and concept shift, each reflecting a distinct mismatch be-
tween the training and testing distributions (Kouw and Loog
2019):

* Covariate shift refers to changes in the marginal distri-
bution of the input features P(X), while the conditional
distribution P(Y'|X) remains invariant.

* Concept shift refers to changes in the conditional distri-
bution P(Y|X), indicating that the underlying relation-
ship between features and labels changes.

A wide range of methods has been proposed for detect-
ing data distribution shifts. For covariate shift, detection
techniques involve statistical divergence measures (e.g.,
Kullback-Leibler divergence (Csiszar 1975), Maximum
Mean Discrepancy (Gretton et al. 2012)) or hypothesis test-
ing procedures (e.g., Kolmogorov-Smirnov test (Marsaglia,
Tsang, and Wang 2003)) to compare Pyyin (X ) and Peg(X).
Detecting concept shift is more challenging because it in-
volves estimating changes in P(Y|X), which is not di-
rectly observable. Common approaches include model-
based methods that track degradation in model performance
metrics (Klinkenberg and Joachims 2000) or using error-
driven drift detectors such as the Drift Detection Method
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(DDM) (Gama et al. 2004). However, because our goal is
to examine the relationship between data distribution shifts
and model performance, using methods that infer shift from
the evaluated model’s own errors or drift statistics introduces
a circular dependency, i.e., the model defines the shift sig-
nal, and that signal is then used to explain the model’s per-
formance. Therefore, we employ a nonparametric, model-
agnostic approach based on k-nearest neighbors (kNN) to
estimate shifts in P(Y'|X) for the empirical study, which is
introduced in detail in later sections.

Beyond detection, various strategies have been proposed
to mitigate the adverse effects of distribution shifts, includ-
ing instance reweighting, ensemble learning, and domain-
invariant feature learning (Azarkesht and Afsari 2022; Bifet,
Holmes, and Pfahringer 2010; Lu et al. 2022). Recent work
has also focused on diagnosing model performance degrada-
tion attributable to different types of distribution shifts (Cai,
Namkoong, and Yadlowsky 2023). While the study provides
a framework to examine performance drops between a sin-
gle source—target pair, our temporal setting considers a se-
quence of source—target pairs generated by expanding the
training window over time.

Predictive Analytics in Education

Predictive analytics has become a widely adopted approach
in education. Institutions leverage large-scale data and ad-
vanced machine learning techniques to inform decision
making (Beaulac and Rosenthal 2019). One notable appli-
cation is the development of early warning systems, which
aim to identify students at risk of academic failure or
dropout. These systems typically utilize behavioral, aca-
demic, and administrative data to generate timely risk pre-
dictions, which allow institutions to implement targeted in-
terventions that support student success (Berens et al. 2019).

Despite the growing adoption of predictive models, rela-
tively little research has examined how the choice and scope
of training data influence model performance, particularly
under conditions of data distribution shift. Prior work has
shown that model outcomes can be highly sensitive to ana-
Iytical design decisions, such as variable selection, prepro-
cessing, and modeling techniques (Tang et al. 2025). Beyond
model specification, the alignment between training and
testing data is also critical. A study on transfer learning in
educational predictive modeling found that contextual infor-
mation can be helpful in guiding model selection; in partic-
ular, more similar pairs of source and target institutions tend
to yield better transfer model performance (Yao, Cortez, and
Yu 2025). Other research has examined how the predictive
value of features evolves over time and varies across student
groups, finding that predictors that are informative at ear-
lier stages can lose importance as new information becomes
available in later periods (Glandorf et al. 2024). Another rel-
evant study explored how data distribution shifts during the
COVID-19 pandemic affected the performance of retention
prediction models and found that, while imperfect, predic-
tive models can still yield useful insights under certain con-
ditions (Xu and Wilson 2021). Extending this line of work,
we examine how the interaction between temporal distribu-
tion shifts and the expanding use of historical training data



shapes the performance and fairness of predictive analytics.

Algorithmic Fairness and Intersectionality

Algorithmic fairness refers to the principle that machine
learning models should yield equitable outcomes across di-
verse demographic groups (Mehrabi et al. 2021). A grow-
ing body of research has assessed whether models trained
on the entire population produce systematically biased pre-
dictions for certain subgroups, particularly along dimen-
sions such as race, gender, and socioeconomic status (Kizil-
cec and Lee 2022). Another line of work has examined the
role of protected attributes in model development, debating
whether their inclusion can improve fairness without intro-
ducing additional harms (Yu, Lee, and Kizilcec 2021). Re-
search has also expanded from single-group fairness to in-
tersectional fairness, which considers the compound disad-
vantages faced by individuals with intersectional marginal-
ized identities (Kong 2022), an important perspective for un-
covering disparities that single-axis analyses may overlook
but one that remains underexplored in educational predictive
modeling.

To address fairness concerns, some studies have proposed
fairness-aware modeling approaches that incorporate fair-
ness constraints during training (Hu and Rangwala 2020).
While current research has identified structural inequities
(Barocas, Hardt, and Narayanan 2023) and data underrep-
resentation (Bird, Castleman, and Song 2024) as sources of
bias in educational prediction models, relatively little atten-
tion has been paid to the role of data distribution shifts in
shaping algorithmic disparities. In this study, we address this
gap by investigating how changes in data distributions con-
tribute to algorithmic bias. Through this lens, we aim to pro-
vide novel explanations for observed disparities.

Problem Setup and Methods
Prediction Task

We focus on the common scenario of binary classification
(e.g., at-risk or not) under expanding historical training win-
dows. Specifically, predictive models are trained using data
from prior time periods, with the training window growing
larger as more historical data is added. This setup enables a
systematic analysis of performance changes as the training
window expands in reverse chronological order.

Measuring Distribution Shift

Covariate Shift We quantify covariate shift separately for
continuous and binary features.

For continuous features, we first standardize each variable
and apply Principal Component Analysis (PCA) to reduce
dimensionality. Let dpca denote the number of retained prin-
cipal components. To measure distributional change along
each component, we apply the Kolmogorov—Smirnov (KS)
test between training and test sets. The KS statistic is defined
as:

Dj = sup [Fiain,j (2) = Fest,j (2))|
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where Firin j and Fiey ; are the empirical cumulative dis-
tribution functions (CDFs) of the j-th principal component
in the training and test datasets. The value D; captures the
maximum difference between the two CDFs and reflects the
marginal distribution shift. We then compute the average KS
statistic across all components as a summary measure:

1 dpca
CovShiftegy = —— D
" dpca ; ’

For binary features, we first calculate the absolute differ-
ence in positive class proportions:

Api = |pi,train - pi,test|

where p; irain and p; s denote the proportion of 1s in fea-
ture ¢ in the training and test sets.

Next, we compute Cramér’s V based on a 2 x 2 contin-
gency table:

(@) @)
Contingency Table, = [ntz‘;i)“’o ntzii)“’ll
n n
test,0 test,1

where ng)v is the count of group g € {train, test} with

value v € {0, 1}. Cramér’s V is calculated as:

XQ/ntotal
min(r — 1,¢— 1)

where 2 is the Chi-squared statistic from the table, ol
is the total number of observations, and » = ¢ = 2 are the
table dimensions.

The binary covariate shift is defined as the average of the
delta proportions and Cramér’s V scores across all binary
features:

Vi

1 1 dpin 1 dbin
CovShifty;, = = Ap; Vi
o= 3 (5 Sy m v 5, 520

To synthesize continuous and binary covariate shifts into one
metric, we calculate a unified covariate shift score as their
arithmetic mean:

CovShifteyn + CovShifty,
2

Concept Shift In the simulation setting, we have access to
the ground-truth coefficients {3} that generate the data. We
therefore measure concept shift in an oracle, model-agnostic
manner by comparing the conditional label distributions in-
duced by the training and testing coefficients. Specifically,
let Biain and S denote the training and testing coefficient
vectors, and let Qg(- | =) be the conditional label distribu-
tion of Y given X = z under coefficients (3. For test covari-
ates {x;}1_,, define

CovShiftypifiea =

. 1 &
ConceptShift = — ;JS(QQ,M,](- | i), Qo | 2:)),



where JS denotes the Jensen—Shannon divergence, a sym-
metric and bounded measure of dissimilarity between prob-
ability distributions. This yields a single scalar summariz-
ing how much the conditional label distributions implied by
Burain and Byeg differ. By design, this pointwise comparison
does not depend on the marginal feature distribution P(X);
hence, the score is unaffected by covariate shift.

However, in real-world data, the true {$} are unobserved,
and using the oracle metric above is not feasible in prac-
tice. Therefore, in our empirical study, we adopt a model-
agnostic and non-parametric approach based on k-nearest
neighbors (kNN) to estimate the conditional distribution.
This method allows us to capture local changes in the re-
lationship between features and the target variable without
imposing strong functional assumptions.

The rationale for using kNN lies in its locality: by aver-
aging outcomes over nearby points in the feature space, the
method approximates the conditional expectation E[Y|X =
x]. Unlike parametric models that assume a fixed functional
form, kNN can flexibly adapt to complex and potentially
non-stationary relationships between features and outcomes.

Specifically, we first project the standardized input fea-
tures into a lower-dimensional space using Principal Com-
ponent Analysis (PCA) to improve the stability and effi-
ciency of distance-based computations. In this reduced fea-
ture space, we estimate the conditional probability p(z) =
P(Y = 1|X = z) for each observation by averaging the
observed labels of its k-nearest neighbors.

Let Pyain and Pres; denote the estimated conditional proba-
bilities from the training and test sets, respectively. We then
compute the concept shift score as:

ConceptShiftys = IS (Prain, Drest)

While our kNN-based approach provides a flexible, non-
parametric estimate of the conditional distribution P(Y'|X),
it is inherently sensitive to changes in the input distribution
P(X). That is, when covariate shift is present, the neighbor-
hoods identified by the kNN algorithm may differ between
training and test sets, even if the underlying conditional rela-
tionship remains stable. As a result, estimated differences in
P(Y|X) may conflate genuine concept shift with distortions
introduced by covariate shift.

To address this issue, we perform a residualization pro-
cedure to isolate the portion of concept shift that cannot be
explained by covariate shift alone. Specifically, we regress
the raw concept shift scores on the unified covariate shift
score:

ConceptShiftg = f(CovShiftunified) + €

where f(-) is the random forest function that captures
both linear and non-linear dependencies. The residual term
€ represents the unexplained component. The residualized
concept shift metric is defined as

~

ConceptShiftyg .q = ConceptShift;g — f(CovShiftunifiea)

Higher values indicate larger discrepancies in the condi-
tional distributions.
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Performance Evaluation

In binary predictions, various performance metrics have
been proposed in the literature. Common metrics derived
from the confusion matrix (e.g., accuracy, precision, recall)
require the selection of a fixed decision threshold. However,
our setting involves expanding training windows and tem-
poral data distribution shifts, which makes it challenging to
determine a stable or meaningful threshold across time win-
dows. Therefore, we adopt the Area Under the Receiver
Operating Characteristic Curve (AUC) as our primary
evaluation metric. AUC is threshold-independent and sum-
marizes model performance across all possible classification
thresholds.
Formally, AUC is defined as:

1
AUC(f(0)) = / TPR(FPR ™ (t)) dt
0
where ¢ denotes a decision threshold, f;(¢,z) = 1 if
f(0,z) > t, and TPR and FPR represent the true positive
rate and false positive rate, respectively. AUC values range
from O to 1, with higher values indicating better discrimina-
tive ability; an AUC of 0.5 corresponds to random guessing.

To assess fairness across demographic subgroups and cap-
ture intersectional disparities, we use the AUC Gap (Gard-
ner et al. 2023) as a group fairness metric. The AUC Gap is
defined as:

i [Ep, [AUC(fy | Diy)] ~ En, [AUC(fy | Dy 1))
where Dy, 4 and Dy, o denote the evaluation data restricted
to subgroups ¢ and g’ respectively. This metric captures the
worst-case difference in AUC across subgroups and serves

as a conservative indicator of fairness degradation under dis-
tribution shifts.

Statistical Analysis

To examine the relationship between data distribution shift
and model outcomes, we employ regression analysis as our
primary analytical method. Specifically, we use linear re-
gression models to examine how covariate shift and concept
shift relate to model performance and fairness.

For model performance:

AUC; = Bo+B1-6;+ B2-0; + B3+ (8; X 0;) +emp - V(i) + €
)]

where AUC; denotes model performance for unit 7. The
variables ¢§; and 6; represent covariate shift metric and con-
cept shift metric, respectively. Ien, is a binary indicator that
equals 1 for empirical study and O for simulation study, ac-
tivating school fixed effects ~;[;) in the empirical study to
account for institutional heterogeneity.

To assess model fairness, we examine the relationship be-
tween shift disparities across demographic groups and the
AUC gap

AUCGap; = fBo + 1 Ai + B2 - O + Lemp - vjj5) + €5 (2)

where AUCGap, measures fairness disparity for unit . The
terms A; and ©; represent the (max-min) gaps in covariate
and concept shift across demographic groups.



Simulation Study
Simulation Process

We design a simulation framework to examine how temporal
covariate shift and concept shift affect model performance
and fairness under an expanding training window setting.
Below, we describe how we simulate each type of shift and
outline the experimental scenarios used in our study.

Covariate Shift To simulate temporal covariate shift, we
allow the marginal distribution P(X) to vary across time
while keeping P (Y| X) fixed. Specifically, we apply a time-
dependent mean shift to the continuous features. For each
continuous feature x;, its mean at time ¢ is defined as:

i = i 465 o

where §; is a feature-specific drift direction, ;¥ € [0,1] is
a progression parameter that controls the magnitude of the
shift over time, and N§0) is the baseline mean.

Binary features also shift in marginal proportions by ad-
justing their Bernoulli probabilities over time. For each bi-
nary feature x;, the probability of success at time ¢ is:

t 0
" =0 1 gy

where 1'% is the baseline probability, p; determines the rate
of change, and probabilities are clipped to remain strictly

between 0 and 1.

Concept Shift To simulate temporal concept shift, we al-
low the conditional relationship P(Y|X) to evolve over
time. Specifically, we define two sets of coefficients 5(*) and
B, representing the start and end states of the underlying
data-generating process. For each year t € {1,...,T}, we
interpolate linearly between them:

t—1
T-1

Given features X, the log-odds of the binary outcome are
computed as

BY =1 —a)B® + YV, with o =

logit(P(Y = 1|X)) = X; .5(15)

Simulation Methods To implement the simulation sce-
narios, we generate synthetic tabular datasets with a con-
sistent feature structure across all time periods.

Continuous features are independently sampled from
Gaussian distributions with fixed or time-varying means, de-
pending on the covariate shift condition. Similarly, binary
features are drawn from independent Bernoulli distributions
with fixed or drifting probabilities, depending on whether
binary covariate shift is introduced.

For each time period t € {1,...,50}, we independently

generate a dataset D, = {(Xt(i),Yt(i))}?’:1 consisting of

5,000 samples, where each feature vector Xt(i) € R con-
catenates 15 continuous and 4 binary features. The corre-
sponding binary label Yt(z) € {0,1} is sampled from a
Bernoulli distribution, with the success probability deter-
mined by the logistic model at time ¢.

Simulation Scenarios

Model Performance To address RQ1 and RQ2, we sim-
ulate four scenarios to examine how covariate and concept
shifts influence model performance under expanding train-
ing windows. In each scenario, data is generated from a com-
mon process across the entire population, without group-
specific variation. Predictive performance is assessed using
AUC on a fixed test time period (i.e., the most recent time
period), while the training set is progressively expanded by
incorporating additional data from earlier time periods.

e Scenario (A): No Shift — Both the feature distribution
P(X) and the conditional relationship P(Y'|X) remain
stationary over time. This serves as a baseline to observe
performance under temporal stability.

* Scenario (B): Covariate Shift Only — The marginal
distribution P(X) changes gradually over time, while the
conditional distribution P (Y| X') remains fixed.

* Scenario (C): Concept Shift Only — The conditional
relationship P(Y'| X)) changes over time through smooth
transitions in model coefficients, while the feature distri-
bution remains constant.

* Scenario (D): Combined Shift — Both P(X) and
P(Y'|X) change over time. This setting reflects the com-
pounded effects of simultaneous covariate and concept
shifts.

In all cases, the logistic regression model is trained using
data from an expanding window ending at time ¢ — 1, and
evaluated on a fixed test year ¢.

Model Fairness To address RQ3, we extend the simu-
lation framework to incorporate group-specific distribution
shifts. Our goal is to assess whether covariate or concept
shifts lead to disproportionate performance degradation for
certain demographic groups, with particular attention to in-
tersectional subgroups.

We consider two fairness-specific simulation scenarios:

* Scenario (E): Single-Group Shift — One binary group
(e.g., group = 1 for a demographic attribute) experiences
either covariate shift or concept shift over time, while
the other group remains stationary. This setting allows us
to measure whether group-based shifts lead to growing
AUC gaps between groups.

* Scenario (F): Double-Group Shift — Two binary de-
mographic attributes, G1 and G2, jointly define four in-
tersectional subgroups. One subgroup from each attribute
independently undergoes concept shift. We manipulate
the direction of these shifts—either aligned (same direc-
tion) or opposed. This setup enables us to evaluate how
the alignment of shifts across demographic dimensions
affects fairness, and whether intersectional subgroups
suffer more pronounced fairness degradation when ex-
posed to conflicting versus reinforcing shift patterns.

In both cases, the logistic regression model is trained us-
ing full data from an expanding window ending at time t — 1,
with performance assessed separately for each subgroup.
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Figure 1: Model performance and data distribution shift metrics across training window sizes. Each panel shows how AUC
(left axis) and shift scores (right axis) change as the training window expands in four simulated scenarios: (A) No shift, (B)
Covariate shift only, (C) Concept shift only, and (D) Combined shift. Scales are not directly comparable across metrics; only

within-metric trends matter.

Results

Model Performance Figure 1 presents model perfor-
mance and data distribution shift metrics across the four
simulated scenarios introduced above. To address RQ1, we
examine how expanding the training window size affects
model performance under different types of temporal shift.

In the No Shift scenario, model performance remains
largely flat as the training set increases, with a small im-
provement at the beginning. In the Covariate Shift Only
scenario, although the covariate shift metric varies over
time, model performance remains stable. Under the Concept
Shift Only scenario, model performance is stable at first but
then consistently declines as the training window expands.
Lastly, in the Combined Shift scenario, we also observe per-
formance degradation over time, but the magnitude is less
severe compared to the Concept Shift Only scenario.

To address RQ2, we examine how different types of data
distribution shifts relate to changes in model performance
as described in Equation 1. The full regression results are
presented in the Appendix!. Across all simulated scenar-
ios, we find that concept shift has a consistently negative
and statistically significant association with model perfor-
mance degradation. In Concept Shift Only scenario, the co-
efficient for concept shift is 5 = —0.4040 (p < .001). In

'Appendix is available at https:/github.com/AEQUITAS-
Lab/Distribution-Shift-AIES-2025
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the Combined Shift scenario, the coefficient for concept shift
is 8 = —0.6651 (p < .001). Covariate shift alone, as ex-
amined in Covariate Shift Only scenario, shows no signif-
icant relationship with model performance (6 = —0.0001,
p = 0.502), consistent with the flat AUC trend observed
under that condition. In addition, in the Combined Shift sce-
nario, covariate shift still shows no significant relationship
with model performance (8 = —0.0205, p = 0.154). The in-
teraction between concept shift and covariate shift is not sta-
tistically significant, suggesting that their joint occurrence
does not affect model performance beyond the impact of
each shift individually; thus, concept shift is the primary
driver of performance degradation in our simulations. One
limitation of our simulation design is that covariate and con-
cept shifts are generated independently; in real-world set-
tings, these shifts may interact in more complex and inter-
twined ways.

Model Fairness To address RQ3, Figure 2 presents the
results for the Single-Group Shift scenario. In the Con-
cept Shift Only condition, we observe that the subgroup
exposed to the shift exhibits a clear performance decline,
while the unshifted group shows a gradual performance im-
provement. This increase occurs because the global model’s
coefficients are pulled closer to the stable subgroup’s true
decision boundary as the training window expands. As
a result, the fairness metric—AUC Gap between the two
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groups—increases as the training window expands.

In contrast, in the Covariate Shift Only condition, even
though one group undergoes greater covariate distributional
shift, model performance remains largely unaffected and the
AUC Gap stays flat. This finding indicates that covariate
shift alone does not necessarily compromise predictive par-
ity.

To formally quantify the effects, we conducted regression
analyses based on Equation 2. The group-level difference in
concept shift metric was a significant predictor of fairness
degradation, with a coefficient of 8 = 2.5089 (p < .001).
This result implies that larger inter-group disparities in con-
cept shift are associated with greater disparities in model
performance.

We next examined the Double-Group Shift scenario to
assess how intersectional dynamics influence fairness out-
comes. Figure 3 illustrates the impact of concept shift
on model fairness when two demographic dimensions are
jointly shifted. The effects of intersectional shift are not
merely the sum of individual group shifts. When the con-
cept shift directions are aligned across groups, the intersec-
tional group may experience attenuated disparity. In con-
trast, when shift directions are opposite, the intersectional
disparities can become amplified, resulting in a larger AUC

gap.
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Empirical Case Study
Study Context and Data

Our empirical study focused on predicting student retention
in postsecondary education. The central technical objective
is to predict first-year retention using the expanding training
window approach. First-year retention is defined as whether
a student who enters an institution for the first time in a Fall
term subsequently re-enrolls at the same institution in the
following Fall. This definition aligns with the standard used
by the federal government (Gardner 2022).

Through an established research partnership, we obtained
access to detailed administrative records from 23 commu-
nity colleges located within a southern state in the United
States. These records included a wide range of student-level
data, such as demographic background and academic perfor-
mance. Community colleges are two-year public institutions
that play a critical role in the U.S. higher education system.
They serve as a primary access point to postsecondary edu-
cation for many students from underrepresented and under-
served backgrounds, including low-income, first-generation,
and minority students. Compared to four-year research uni-
versities, community colleges typically have lower retention
and completion rates (U.S. Department of Education 2025).

For this study, we restrict the sample to first-time, first-
year students who entered college during Fall terms from
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2010 to 2021, resulting in a dataset of 1,307,789 students.
Among these students, the overall composition comprises
56.7% female students and 31.1% underrepresented minor-
ity (URM?) students. The largest intersectional subgroup is
Non-URM Female (37.5%), followed by Non-URM Male
(31.4%), URM Female (18.1%), and URM Male (12.9%). To
ensure comparability across institutions, we constructed a
shared data schema based on commonly available variables.
For each college, we designate the most recent year (2021)
as the fixed test set and construct expanding training win-
dows by progressively incorporating data from earlier years.
The shared data schema is documented in the Appendix.

Results

AUC Trends for Selected Colleges

—e— College A
—— College B
—e— College C

AUC on Test Set (2021)

2020 2018 2016 2014

Training Start Year

2012 2010

Figure 4: AUC trends by training start year for selected col-
leges. Model performance (AUC) on the 2021 test set is
shown for three representative colleges, plotted against the
training start year. Each curve corresponds to an expanding
training window that begins in the indicated year and ends
in 2020. Full results for all colleges are provided in the Ap-
pendix.

2URM refers to students who identify as Black/African Ameri-
can, Hispanic/Latino, or American Indian, in line with institutional
reporting practices in the United States.
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Predictive Performance Figure 4 illustrates representa-
tive performance trajectories for three colleges over time.
Each line reflects AUC performance on the fixed test set
(2021) as the training window expands. The selected col-
leges exemplify three common patterns observed across the
full dataset. College B shows a relatively stable trend, sug-
gesting that accumulating historical data has limited in-
fluence on retention prediction. College A demonstrates a
steady but modest improvement, indicating that additional
training history enhances model performance. College C fol-
lows a rise-then-decline pattern, where performance initially
improves but eventually deteriorates as older data is added.
All remaining colleges conform to one of these three general
patterns, with full results reported in the Appendix. These
findings show that increasing training data is not universally
beneficial. While some colleges benefit from an expanding
training window, others see minimal gains or even perfor-
mance degradation.

Figure 5 presents the covariate shift and concept shift tra-
jectories for the same three exemplar colleges. Covariate
shift trajectories are relatively consistent across colleges and
show a steady increase as the training window expands. This
pattern reflects gradual changes in the marginal distribution
of input features over time. By contrast, concept shift trajec-
tories exhibit more variation across colleges. Although the
specific patterns differ, the overall trend is upward and in-
dicates increasing divergence in the conditional relationship
between features and outcomes as training windows expand.
Full results for all colleges are available in the Appendix.

To examine how temporal shift influences predictive per-
formance, we conduct a regression analysis on the pooled
dataset across all colleges, following Equation 1. At the full-
sample level, none of the examined metrics show a statis-
tically significant main effect on performance. One possi-
ble explanation is that the size of the training set conditions
the observable impact of concept shift: larger training win-
dows may amplify the effect of even modest shifts, whereas
smaller windows may introduce high variance that obscures
the influence of substantial shifts. Motivated by this con-
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in the Appendix.

sideration, we explore whether training size modulates the
impact of concept shift on model performance. Specifically,
we estimate the regression coefficient capturing the relation-
ship between concept shift and performance across training
sets of varying sizes and find that models trained on larger
datasets exhibited a more stable and interpretable associa-
tion between concept shift and predictive performance; de-
tailed results are provided in the Appendix. To investigate
this further, we partition the training sets into tertiles by
size (Low, Medium, High) and re-estimated Equation 1 sep-
arately for each group. The results reveal that the coefficient
for concept shift became increasingly negative and statisti-
cally significant as the training set expanded. In the largest
tertile, concept shift had a statistically significant and pro-
nounced negative effect on performance (8 = —0.5412,
p = .003). These findings suggest that the adverse effects
of concept shift become more detectable when models are
trained on sufficiently large historical datasets. The effect of
covariate shift was more mixed: it was statistically signif-
icant in both the smallest and largest groups, but the cor-
responding coefficients were relatively small, indicating a
modest and inconsistent influence on performance. Notably,
the interaction between concept and covariate shift became
increasingly positive and statistically significant with larger
training sets. These results indicate that the co-occurrence of
covariate and concept shift can lead to compounded perfor-
mance degradation.

Algorithmic Fairness We examine model fairness by con-
structing four intersectional subgroups based on gender and
underrepresented racial minority (URM) status. The model
is trained on the full dataset, and subgroup-specific perfor-
mance and shift metrics were computed using a fixed test
year. Figure 6 illustrates representative patterns of both dis-
tribution shift and AUC across the four groups. We do not
observe a consistent pattern in which any particular group
experienced uniformly greater exposure to shift or worse
model performance across colleges. This is consistent with
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our simulation findings that the fairness impact on inter-
sectional groups cannot be understood as a simple additive
combination of single-group effects.

To more formally assess the relationship between distri-
bution shift and model fairness, we apply the regression
framework outlined in Equation 2. Our analysis shows that
the gap in concept shift across groups is a statistically sig-
nificant predictor of the AUC gap (6 = 0.5558, p = .002),
suggesting that fairness disparities are more likely to emerge
when certain groups undergo substantially different degrees
of concept shift. In contrast, the gap in covariate shift is not
significantly associated with the AUC gap (5 = 0.0055,
p = .916). These findings are consistent with our simulation
results, which indicate that larger inter-group differences in
concept shift lead to more pronounced disparities in model
performance.

Discussion and Conclusion

In this study, we examine the issue of predictive analytics
under expanding temporal training windows, where earlier
historical data is progressively incorporated to train mod-
els to predict future outcomes. Using a simulation study and
a large-scale empirical analysis in the education sector, we
present how the expansion of historical training data inter-
acts with temporal data distribution shifts, specifically co-
variate and concept shift, to impact both model performance
and fairness.

Both simulation and empirical results challenge the con-
ventional assumption that simply increasing the volume of
training data from the past would improve model perfor-
mance. In dynamic environments characterized by distribu-
tional changes in historical data, this strategy can result in
diminishing returns or even performance degradation. These
findings underscore that predictive effectiveness depends not
only on the quantity of data, but also on its temporal rele-
vance and alignment with evolving patterns.

Beyond performance, we observe that uneven exposure
to temporal concept shifts across sociodemographic groups
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leads to disparities in subgroup predictive performance. Im-
portantly, among intersectional groups, the effects of mul-
tiple identities interact in ways that cannot be understood
as a simple sum of individual group effects. These observa-
tions align with prior studies highlighting that models that
are fair with respect to individual attributes like race or gen-
der may still exhibit unfairness at their intersections (Wang,
Ramaswamy, and Russakovsky 2022). As a consequence,
fairness-aware modeling should move beyond static group
comparisons to account for both temporal and intersectional
variation in data conditions.

Our study advances understanding of how distribution
shifts shape the performance and fairness of predictive mod-
els under expanding training windows. By disentangling
the distinct contributions of covariate and concept shift, we
demonstrate that the benefits of adding more historical data
depend on the nature and magnitude of underlying shifts. We
also introduce a reproducible simulation framework capa-
ble of generating controlled and decoupled shift scenarios.
Furthermore, we extend fairness analysis by showing that
inter-group disparities in concept shift can be a key driver of
fairness degradation in predictive modeling.

This study has several practical implications. For model
developers, our findings emphasize the importance of evalu-
ating distributional changes in training data when expanding
historical datasets. While we do not have the capacity to di-
rectly identify the point at which additional data no longer
enhances model performance, our results demonstrate that
temporal distribution shifts can affect performance, which
underscores the need for reasonable training dataset selec-
tion to reduce potential degradation and to avoid unneces-
sary data accumulation, storage needs, and computational
costs. For institutional researchers, our findings highlight the
importance of monitoring subgroup-level performance lon-
gitudinally and examining whether emerging disparities are
associated with uneven exposure to shifts in the underlying
population or behavioral patterns. For fairness researchers,
our work extends beyond auditing model outcomes to un-

derstanding why models become less fair by offering a data
distribution shift perspective as an explanatory lens.

Our study also has several limitations. First, while the
simulation design offers strong control over the shift pro-
cesses, real-world data may involve more complex and inter-
acting shifts, as well as unobserved patterns, that influence
both model performance and fairness, as seen in our em-
pirical analysis. Second, although our kNN-based method
provides a non-parametric, model-agnostic way to estimate
concept shift, it is not without limitations and may be in-
fluenced by factors such as feature scaling, high dimension-
ality, or sparsity in certain regions of the feature space. Fu-
ture work could explore purely statistical approaches to mea-
suring concept shift that further reduce dependence on spe-
cific modeling. Third, although we demonstrate that tempo-
ral distribution shift can affect model performance, we do
not yet provide an accurate method for identifying the exact
point at which additional historical data ceases to be use-
ful. Future research should seek to quantify this threshold
and investigate how concept shift interacts with training data
scope in ways that make certain historical data detrimental
rather than beneficial. Finally, although our dataset spans a
large number of institutions, the analysis remains contex-
tually bounded, as it draws from a single state system and
focuses on a specific predictive task. Extending this work to
other domains that rely on historical data to predict future
outcomes—such as employment forecasting, financial risk
modeling, or public health monitoring—would help assess
the generalizability of our findings.
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