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Abstract: Large language models (LLMs) are in-
creasingly adopted in educational contexts to pro-
vide personalized support to students and teachers. 
The unprecedented capacity of LLM-based applica-
tions to understand and generate natural language 
can potentially improve instructional effectiveness 
and learning outcomes, but the integration of LLMs 
in education technology has renewed concerns over 
algorithmic bias, which may exacerbate educational 
inequalities. Building on prior work that mapped the 
traditional machine learning life cycle, we provide a 
framework of the LLM life cycle from the initial devel-
opment of LLMs to customizing pre-trained models 
for various applications in educational settings. We 
explain each step in the LLM life cycle and identify 
potential sources of bias that may arise in the context 
of education. We discuss why current measures of 
bias from traditional machine learning fail to transfer 
to LLM-generated text (eg, tutoring conversations) 
because text encodings are high-dimensional, there 
can be multiple correct responses, and tailoring re-
sponses may be pedagogically desirable rather than 
unfair. The proposed framework clarifies the complex 
nature of bias in LLM applications and provides prac-
tical guidance for their evaluation to promote educa-
tional equity.
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INTRODUCTION

In late 2022, large language models (LLMs) and generative artificial intelligence (AI) cap-
tured widespread attention when OpenAI released a public beta version of its LLM-based 
chatbot ChatGPT. It offered a compelling demonstration of the state of the art in generative 
AI chatbots by engaging in text-based conversations that exhibit forms of intelligence and 
a human-like tone. The technology was put to the test, quite literally, and scored extremely 
highly on a large variety of standardized tests, in addition to fooling a panel of judges in a 
version of the Turing test, which led scientists to question the validity of the famous bench-
mark for machine intelligence (Biever, 2023). Realizing the immense impact that LLMs can 
have in education, OpenAI partnered with Khan Academy ahead of the public release of 
GPT-4 to help the EdTech provider integrate a version of GPT-4 into its learning platform as 
an “AI-powered guide, tutor for learners, and assistant for teachers” called Khanmigo (Khan 
Academy,  n.d.). Similar AI-powered learning assistants quickly appeared in other major 

Practitioner notes

What is already known about this topic
•	 The life cycle of traditional machine learning (ML) applications which focus on 

predicting labels is well understood.
•	 Biases are known to enter in traditional ML applications at various points in the life 

cycle, and methods to measure and mitigate these biases have been developed 
and tested.

•	 Large language models (LLMs) and other forms of generative artificial intelligence 
(GenAI) are increasingly adopted in education technologies (EdTech), but current 
evaluation approaches are not specific to the domain of education.

What this paper adds
•	 A holistic perspective of the LLM life cycle with domain-specific examples in edu-

cation to highlight opportunities and challenges for incorporating natural language 
understanding (NLU) and natural language generation (NLG) into EdTech.

•	 Potential sources of bias are identified in each step of the LLM life cycle and 
discussed in the context of education.

•	 A framework for understanding where to expect potential harms of LLMs for 
students, teachers, and other users of GenAI technology in education, which can 
guide approaches to bias measurement and mitigation.

Implications for practice and/or policy
•	 Education practitioners and policymakers should be aware that biases can origi-

nate from a multitude of steps in the LLM life cycle, and the life cycle perspective 
offers them a heuristic for asking technology developers to explain each step to 
assess the risk of bias.

•	 Measuring the biases of systems that use LLMs in education is more complex 
than with traditional ML, in large part because the evaluation of natural language 
generation is highly context-dependent (eg, what counts as good feedback on an 
assignment varies).

•	 EdTech developers can play an important role in collecting and curating datasets 
for the evaluation and benchmarking of LLM applications moving forward.
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EdTech platforms, such as Coach on the Coursera platform (Coursera, 2023) and XPert 
on the EdX platform (edX Press, n.d.). These chatbots are perhaps the closest anyone has 
come to a scalable and domain-agnostic solution to Bloom's Two-Sigma Problem on how to 
provide large numbers of learners with support that is as effective as personal tutoring using 
a mastery-learning approach (Bloom, 1984). EdTech providers are developing new features 
using LLMs to enhance their products, including AI tutors that answer student questions in 
real-time, provide instant, personalized feedback on written assignments, or help teachers 
create new assignments and grade them faster with detailed feedback. There are numerous 
potential applications of this new technology in education (Yan et al., 2024), which raises 
questions about the long-term impacts of AI in education, and more immediate questions 
about issues that can arise when AI-based technology, built on data sourced from the World 
Wide Web, is deployed in classrooms (Denny et al., 2024; Yan et al., 2024).

In this article, we focus on the potential biases that LLMs may exhibit in the context 
of education. Algorithmic biases tend to negatively impact members of disadvantaged 
groups and perpetuate inequities at a larger scale. Most LLMs, including GPT models 
(Brown et al., 2020; Bubeck et al., 2023; OpenAI, 2023; Radford et al., 2019), Palm 2 (Anil 
et al., 2023), BLOOM (Workshop et al., 2023), LLaMA (Touvron et al., 2023), Flan-T5 (Chung 
et al., 2024), BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019), are trained on extremely 
large web corpora, which can cause them to learn social biases even when active steps 
are taken to mitigate them. This can be difficult to examine directly because many LLMs, 
including those developed by OpenAI, are not released as open-source models and provide 
limited information on how models were trained and evaluated. A growing number of open-
weight models have been released, including Mistral (Jiang et al., 2023), Falcon (Almazrouei 
et al., 2023), Gemma (Gemma Team, Mesnard, et al., 2024), Gemini (Gemini Team Google, 
Anil, et al., 2024) and QWen (Bai et al., 2023). These models allow the community to study 
their fairness properties more closely, providing valuable insights into their performance 
and biases. However, many of these models are not fully open-source, as they do not pro-
vide comprehensive details such as the model architecture code, training methodology, 
hyperparameters, original training datasets, documentation and other relevant information. 
Additionally, biases can also arise based on how models are integrated into an application, 
which has sparked efforts to promote responsible AI using application-specific licensing (eg, 
the BigScience RAIL Licence1).

The rapid adoption of LLM-based technology in educational institutions presses the need 
to systematically evaluate LLMs for bias to avoid unintended consequences, such as am-
plifying current educational inequities in opportunity and achievement. Although there is an 
established area of research on AI bias and fairness, including a domain-specific literature 
for education (Baker & Hawn, 2022; Kizilcec & Lee, 2022), there is limited guidance on what 
potential biases can arise in the process of LLM development, how to evaluate and miti-
gate bias in LLM-based applications, specifically in the context of education. Applications of 
LLM-based generative AI raise particular challenges for evaluating bias due to the complex-
ity of its natural language output and establishing a ground truth that is appropriate for the 
context of use. This article aims to improve our understanding of bias resulting from LLMs 
in educational applications. To define the context of these applications, we first present a 
set of studies that use LLM technology to support a variety of tasks in educational settings. 
Then, building on an established framework of the life cycle of (traditional) machine learning, 
we propose a new framework of the LLM life cycle that traces each step from the initial de-
velopment to the final touches of customization for LLM-based applications. For each step 
in the LLM life cycle, we highlight potential biases that can arise in educational contexts and 
potential measures of those biases. We discuss the implications of the LLM life cycle for 
researchers interested in evaluating and mitigating bias, practitioners interested in under-
standing where biases might arise from and policymakers looking to better understand the 
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ethical issues related to LLM use in education, including the opportunity cost of not using 
LLMs. Evaluating this opportunity cost is crucial; while addressing and mitigating bias in 
LLMs is important, abandoning them without considering their benefits could hinder educa-
tional progress by depriving students of valuable feedback and support. In this article, we 
highlight opportunities and practical challenges of using LLMs in education and important 
areas for future research on LLM bias and fairness in education.

LLM APPLICATIONS IN EDUCATION

There are a variety of ways that LLMs can be used in educational contexts, many of which 
have been described by Yan et al. (2024). We organize them into two broad types of use 
cases: natural language generation (NLG) and natural language understanding (NLU) tasks. 
NLG tasks include creating educational content, such as lesson plans, assessments, and in-
class materials like worksheets (Kasneci et al., 2023; Leiker et al., 2023; Wollny et al., 2021). 
NLU tasks involve analysing text for an educational purpose, such as making a prediction 
based on a student's essay submission about how well they understood the materials and 
scored on a given grading rubric. NLU tasks can also serve as an input into a larger model, 
such as an LLM used to detect confusion in a student's question, which can serve as an 
input into a predictive model for student underperformance and drop-out. An NLU task can 
also serve as the first step of an NLG task: an AI-based grading system, for example, may 
first analyse and score a student's essay and then generate written feedback based on that 
analysis (Zheng et al., 2022). Other examples of combined NLU-NLG tasks include tutoring 
chatbots like Khanmigo (Khan Academy, n.d.) and Rori (Henkel et al., 2024), which provide 
customized guidance to students across subjects including mathematics and the language 
arts, systems that provide personalized hints for compiler errors in a programming course 
(Pankiewicz & Baker, 2024), and tools designed to provide feedback or training to educators 
and tutors (Lin et al., 2023). In the context of this review article, we focus on cases where 
LLMs are used to enhance teaching and learning, and we therefore do not consider use 
cases like LLM-based essay-writing services.

In the responsible AI literature, algorithmic biases have been organized into two broad 
categories: representational biases and allocative biases (Suresh & Guttag, 2021). The po-
tential biases associated with NLG tasks are mostly representational biases because NLG 
tasks can create text containing stereotypes or misrepresentations, exclusionary language 
or even toxic content (Weidinger et al., 2021).2 The potential biases associated with NLU 
tasks are mostly allocative biases (ie, a bias in the allocation of resources) because individ-
uals may receive differential access to resources or opportunities (Suresh & Guttag, 2021). 
For example, a grading system using an LLM for NLU could systematically assign lower 
scores to students of certain demographic groups, even though no identifying information 
was provided to the LLM. In fact, LLMs have been shown to display dialect prejudice when 
asked to make decisions about speakers of African American English (AAE) as compared 
to speakers of Standard American English (SAE) (Hofmann et al., 2024). Educational appli-
cations that rely on both NLU and NLG are susceptible to both types of biases. For example, 
an intelligent tutoring system might generate assessments that inadvertently reinforce ste-
reotypes (a representational bias) and also disproportionately show those assessments to 
students with certain backgrounds (an allocative bias).

The classification of different tasks (NLU and NLG) and types of biases (allocative and 
representational) begin to organize the complexity associated with bias from LLMs in ed-
ucation technology. However, it does not explain where biases originate in the multi-step 
process from developing to customizing to ultimately deploying an LLM for an educational 
purpose. We therefore developed a framework for understanding this multi-step process to 
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help identify where biases might emerge, for what reasons and how to potentially measure 
them.

THE LLM LIFE CYCLE FROM DEVELOPMENT TO DEPLOYMENT

We build on the machine learning life cycle framework proposed by Suresh and Guttag (2021). 
It pinpoints where bias can be introduced in the process of creating and deploying a system 
using traditional machine learning. We have modified their original framework for the specific 
context of LLM-based applications, which is substantially more complex, to examine where 
bias may be introduced (Figures 1 and 2). Due to its complexity, we divide the life cycle into 
two phases: the initial development phase of the base LLM, and the customization phase 
which relies on a base LLM. We describe potential biases in each step of the life cycle with 
examples from education contexts.

Phase 1: Training a base LLM

Scraping and sampling

Large language models (LLMs) are trained using extensive text corpora, such as 
WebText or Common Crawl (Radford et  al.,  2019), which are scraped from pages on 
the World Wide Web. Online text data can reflect both current and past discrimination. 
Biases can arise from prejudices contained in these data, including biases inherent in 
the text (ie, the content of the text) or biases arising from the selection process (ie, which 
texts are included and which are excluded). Historical bias frequently arises when data 

F I G U R E  1   The initial development phase of the LLM life cycle with potential sources of biases, after Suresh 
and Guttag (2021).
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are collected over a long period and unintentionally reveals historical discrimination for 
certain groups. For instance, when collecting data related to STEM fields, there tends 
to be an imbalanced gender representation because there has historically been less 
representation of women in these areas. Additionally, due to the vast amount of data from 
various sources, genres and periods, the content may include discriminatory elements, 
such as documents involved in discrimination, which can pose harm to certain groups 
(Barocas & Selbst, 2016).

Considering the historical biases that have accumulated globally, representation bias 
can emerge in the form of an imbalance in the sampled data along dimensions includ-
ing language, sample periods, available sources, and authorship. Ultimately, there is no 
way to avoid these difficult choices during the sampling process to narrow down the vast 
volume and diversity of text on the Internet. Representation bias can arise due to source 
availability and related policy restrictions, resulting in a predominant collection of English-
focused datasets, while datasets for other languages could be relatively underrepresented. 
Consequently, content in other languages might not be fully represented in the actual world. 
Additionally, the choice of when to start scraping and sampling can cause representation 
bias because data gathered a long time ago might not reflect present-day conditions. The 
consequences of representation bias, including geographical (Ocumpaugh et al., 2014) and 
temporal (Levin et al., 2022) bias in the training data, have been examined in the context of 
education technology. Yet representation bias can occur not only during data sampling but 
also when recruiting people for data labelling or ‘red teaming’ (the practice of recruiting an 
external team to discover risks by taking an adversarial approach, for example, showing bi-
ases by trying to elicit them from the system). The background characteristics of individuals 
recruited for these efforts can present a further source of representation bias.

The unregulated nature of World Wide Web content can further contribute to represen-
tation bias. Specifically, harmful content that is explicitly or implicitly stereotyping, mis-
representing, and using toxic or exclusionary language can affect the representation of 
members of certain groups in the training corpus. A number of open training datasets, such 
as LAION-400M (T. L. Team,  2024), have been found to contain disturbing and explicit 

F I G U R E  2   The customization phase of the LLM life cycle with potential sources of biases, after Suresh and 
Guttag (2021).
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content, including images-text pairs related to rape, pornography, harmful stereotypes, as 
well as racist and derogatory remarks about some ethnic backgrounds (Birhane et al., 2021, 
2023). This evidence suggests that larger-scale versions of these datasets could exacerbate 
representational bias.

Once a text corpus for developing the LLM has been sampled, the next step is to pre-
process the data. To improve data quality, duplicate texts are removed, noisy data are 
removed (eg, very short pieces of text), personally identifiable information is removed or 
masked, texts related to popular benchmarks are removed to ensure a fair evaluation (a 
process known as decontamination), and texts containing toxic or overtly biased language 
are removed (Weights & Biases, 2023). The process of filtering out toxic and biased content 
relies on dictionaries (LDNOOBW, 2023) or detection tools (spamscanner, 2023). However, 
these may not capture all instances of objectionable speech. We can apply a framework to 
help parse harmful content, for instance, by categorizing it along the type of harm (eg, misin-
formation, hate speech, stereotypes), whether harmful content is sought out for the specific 
application (eg, to learn how to identify it better going forward) or not, and who is affected by 
the harmful content (eg, individuals represented in the dataset, demographic groups) (Kirk 
et al., 2022).

In developing tools or frameworks to process raw text data, we may inadvertently encoun-
ter measurement bias, defined here as a systematic error in measuring specific abstract 
concepts (eg, toxicity, bias, private information). A feature typically represents a specific 
measurement that stands in for a broader and often intangible concept. For example, it can 
be challenging to measure the concept of “toxic” when there are only subtle and implicit 
discriminatory words in the text. If certain slang terms are commonly used by a particular 
community, it can be difficult to determine whether the words are toxic or not. Measurement 
bias can also arise from people tasked with identifying instances of the construct. The 
opinions of individuals who label toxic and biased content are shaped by their viewpoint 
and background, which can reinforce their perspectives (and exclude others) through the 
process of data curation and filtering (Weights & Biases, 2023). Overall, this inherent am-
biguity in quantifying abstract constructs can introduce measurement bias when operation-
alizing these constructs during data pre-processing, and ultimately lead to harm (Jacobs & 
Wallach, 2021).

Pre-training (training corpus → pre-trained LLM)

Once the training corpus is pre-processed, the next step is tokenization. The text data is 
broken down into pieces that can be words, parts of words, or byte pairs. This process 
transforms the text corpus into a format that models can process. These are used to create 
word and contextual embeddings to represent features that allow machine learning models 
to easily correlate input data with output data. These embeddings are designed to capture 
the semantic and syntactic properties of words within a high-dimensional space, thereby 
enhancing the model's capability in NLU and NLG tasks. This sets up the architecture for 
pre-training the model, which involves a sequence of transformer blocks with multi-head 
self-attention mechanisms and fully connected layers of neural networks (Radford & 
Narasimhan, 2018).

Once this architecture is set up, the model is pre-trained to predict the next token in 
sequence, and during the pre-training, the model's weights are optimized while its predic-
tions are continuously compared to the actual outcomes, using the errors to update the 
weights in each step. The model thereby learns contextualized representations of words 
and phrases. Typically, the loss function used for pre-training LLMs is cross-entropy loss, 
which measures the difference between the predicted probability distribution and the 
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distribution of the actual next token (Mehrabi et al., 2021; Minaee et al., 2024). Pre-training 
techniques vary based on whether the focus is on NLU or NLG. For NLU, models like 
BERT utilize masking techniques where some words in a sentence are hidden, and the 
model is trained to predict these masked words. This approach helps the model grasp the 
context and meaning of sentences. Additionally, BERT employs a next-sentence predic-
tion task where the model predicts whether a sentence logically follows a given sentence, 
further enhancing its understanding capabilities. On the other hand, NLG-focused models 
like GPT are pre-trained using a next-word prediction task, where the model learns to 
predict the next word in a sequence given the previous words. This sequential predic-
tion task is important for generating coherent and contextually relevant text (Solaiman & 
Dennison, 2021).

However, learning bias (also known as algorithmic bias) can arise during this process 
driven by an objective function like minimizing cross-entropy loss if undesirable biases in 
the training data are inadvertently amplified. We define learning bias in LLMs as amplifying 
undesirable inherent biases when there is a goal to minimize a given loss function. The bias 
that is encoded in this step can be considered intrinsic to the model because it resides in 
the geometry of the embedding space (Goldfarb-Tarrant et al., 2021). There is a plethora of 
studies examining learning bias in word and contextual embedding spaces, including ones 
that study gender bias (Bolukbasi et al., 2016; Zhao et al., 2019), gender and ethnic stereo-
types (Garg et al., 2018), gender neural words (Zhao et al., 2019), cultural biases (Durrheim 
et al., 2023; Swinger et al., 2019; Tao et al., 2024), and studies that trace training documents 
to identify the origin of such biases (Brunet et al., 2019). There is also extensive research on 
debiasing word embeddings, such as reducing gender bias (Bolukbasi et al., 2016; Gonen 
& Goldberg, 2019).

Intrinsic learning bias can be measured with either embedding-based metrics or 
probability-based metrics. Embedding-based metrics are computed distances in the vector 
space between words/sentences representing the domain of evaluation (eg, professions) 
and words/sentences representing the identities being evaluated for bias (eg, genders, ra-
cial groups). The Word Embedding Association Test (WEAT) Caliskan et  al.  (2017) is a 
commonly used embedding-based metric that quantifies biases in word embedding by ex-
amining how closely words related to certain concepts are associated with words related 
to social groups or attributes. Likewise, the Sentence Encoder Association Test (SEAT) 
quantifies bias in a set of sentences by encoding them into numerical embeddings using a 
sentence encoder model (May et al., 2019). Probability-based metrics are computed based 
on the likelihood of predictions. For example, the Discovery of Correlations (DisCo) method 
Webster et  al.  (2020) uses masked tokens in a template sentence completion task. The 
first part of the template sentence includes a word related to a specific social group (eg, 
gendered names or pronouns), and the second part has the language model predict the top 
three words that might complete the sentence. DisCo counts how often the model predicts 
different words for different social groups across all templates to obtain a probability-based 
measure of bias. While DisCo focuses on uncovering patterns within the model's predic-
tions, the Log-Probability Bias Score (LPBS) (Kurita et al., 2019) measures intrinsic prob-
ability distributions of the model's outputs by directly measuring how likely the model is to 
produce certain biased outputs based on the log-probabilities.

Finally, aggregation bias can arise when a chosen model does not perform equally well 
across all subgroups, often because the data includes distinct subgroups that are treated 
uniformly instead of individually (Hutiri & Ding, 2022). There may not be a one-size-fits-all 
model that does not make any sacrifice on performance for certain groups. This bias is rele-
vant for both NLU and NLG tasks, for example, in that a model works well for one language 
but is not the optimal choice for other languages.
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(Optional) general-purpose fine-tuning

After pre-training the language model, LLM developers may use general-purpose fine-
tuning, which is the process of taking a pre-trained model and further training it on a more 
specific dataset or task. This can be achieved using supervised fine-tuning (SFT), which is 
a method for refining a pre-trained model using labelled data. SFT adapts the pre-trained 
model's parameters to behave in a certain way based on a dataset that provides concrete 
examples of how it should behave (ie, a supervised target) (Radford et al., 2018). Since this 
step adds an additional dataset, representation biases can be introduced here too. And 
since SFT updates the pre-trained model parameters based on a chosen objective function, 
learning biases can arise as well.

Reinforcement learning from human feedback (RLHF), which is a type of SFT, is increas-
ingly used to fine-tune the model's behaviour to better align with the goals, needs or pref-
erences of a user group (OpenAI,  2023). Human raters are recruited to provide a large 
number of rankings of text outputs based on criteria such as harmlessness and helpfulness 
(Bai et al., 2022). The resulting dataset contains important signals for what output is more 
desirable for a particular user group, a domain or a task, but human feedback bias can be 
introduced in this step. Human feedback bias creates issues when these ratings mistakenly 
reinforce a model to behave in undesirable ways. The RLHF process requires high-quality 
feedback data, and undesirable outcomes can occur if the instructions provided during the 
labelling process are insufficient or unclear. For example, without proper guidance and train-
ing, human raters might generate preference data that leads the model to suggest harmful 
actions, such as criminal activity (OpenAI, 2023).

Beyond human feedback bias, representation bias, measurement bias and learning bias 
can also emerge during RLHF. Representation bias can arise if the sample characteristics 
of the human raters do not adequately represent the relevant population of the model's appli-
cation context. Measurement bias can arise because concepts like harmlessness and help-
fulness are abstract, and human raters might have varying standards in mind when making 
judgements. Learning bias can occur during the process of updating model parameters, 
depending on how the reward model is created and the objective function is chosen. The 
challenges and open problems associated with human feedback bias in RLHF include that 
human raters may pursue incorrect and harmful goals, including giving adversarial ratings 
that are hard to spot but that can lead to data poisoning (Casper et al., 2023).

Base LLM evaluation

Before the base LLM is ready, it needs to undergo an evaluation step. Many benchmark 
datasets have been created for the purpose of evaluating LLMs by testing different aspects 
of the model's capacities on NLU and NLG tasks. In addition to standard benchmark 
datasets, some developers may engage a group of critical external testers to find flaws or 
vulnerabilities in a model's performance and behaviour–a process known as red teaming. 
This adversarial approach helps uncover potential weaknesses that might not be evident 
through standard evaluation methods. By actively trying to break the model or cause it to 
produce incorrect or biased outputs, the red teaming provides valuable insights into the 
model's robustness and safety (Ganguli et al., 2022). A popular framework for evaluating 
LLMs is the Holistic Evaluation of Language Models (HELM) project (Liang et al., 2023), 
which includes a number of evaluations that focus on the interpretability and transparency of 
models, including bias metrics such as toxicity.

Evaluation bias can arise in this step because there are many choices for evaluating 
the model, which can lead to substantially different conclusions. First, since benchmark 
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datasets are also scraped and sampled from available sources on the Internet, they may 
fail to represent all relevant user groups, and historical bias and representation bias can 
emerge. Additionally, if the benchmark datasets contain construct measures that fail to 
serve as a valid “proxy”, measurement bias can emerge. Second, the composition of a red 
team can be biased and skew the evaluation results. Likewise, although machine learning 
researchers often have access to many statistical methods and models, they tend to select 
only a few results to report based on their personal preferences and available resources 
(Young, 2018). This selective reporting can create a “garden of forking paths” (Young, 2018), 
where different choices in the analysis process lead to significantly different and potentially 
incorrect results. This issue also arises in the development of LLMs. It underscores the im-
portance of considering model uncertainty during the evaluation step to enhance the cred-
ibility and reliability of the models, especially given the growing scepticism and concerns 
about the potential harm from biased or incorrect outputs. This is crucial because the choice 
of performance metric, benchmark dataset and red teaming approach can all influence the 
evaluation results.

Phase 2: Customizing an LLM

LLM customization

After the base model is evaluated, education practitioners can tailor the model for their 
specific needs using various customization techniques (Figure 2). A popular technique for 
customizing an LLM is SFT (supervised fine-tuning), which refines the base model using 
a dataset to specialize the model in a particular domain or task (Liu et al.,  2021; Zheng 
et  al.,  2023). For instance, FineWeb-Edu (Lozhkov et  al.,  2024) is an education-specific 
dataset (derived from the CommonCrawl dataset) comprising 1.3 trillion tokens for use in LLM 
customization. The resulting fine-tuned model retains the extensive knowledge embedded in 
the base model and additionally incorporates domain-specific information. In the education 
context, this method has been applied to improve automatic assessment scoring (Latif & 
Zhai, 2024), to support math tutors for remediation of students' mistakes (Wang et al., 2023), 
to assess personal qualities in college admission essays (Lira et al., 2023) and to reduce 
performance disparities in math problem skill tagging tasks across different languages 
(Kwak & Pardos, 2024).

Another potential technique for customizing an LLM is preference tuning, which is the pro-
cess of adjusting a pre-trained model to better align it with specific preferences, priorities, or 
tastes. This can be accomplished using RLHF or direct preference optimization (DPO). DPO 
is a preference-tuning method inspired by reinforcement learning that is relatively simple, 
stable and computationally efficient; it outperforms commonly used methods such as proxi-
mal policy optimization (PPO) based RLHF in many cases (Rafailov et al., 2024). DPO lever-
ages the relationship between the reward model and optimal policies, efficiently addressing 
the challenge of constrained reward optimization within a single policy training phase using 
human preference data. Both SFT and DPO techniques have been applied in education, 
for example, to create an intelligent question-answering system that is tailored to a specific 
introductory computer science course (Hicke et al., 2023).

When practitioners or researchers fine-tune a base model, their domain- or task-specific 
dataset and any human preference data they collect are vulnerable to both historical bias 
and representation bias. These datasets are often sourced from the Internet, smaller in size 
and focused narrowly on specialized tasks that reflect the characteristics of the domain. 
If this dataset mirrors skewed societal perspectives or inaccuracies or represents only a 
specific group of people, the fine-tuned model might adopt these biases, making it less 
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generalizable and more likely to make prejudiced decisions. Additionally, even if the dataset 
fairly represents the real world, learning bias can arise. In addition to amplifying undesirable 
biases in the training data, the model might overly adapt to the new dataset while updating 
parameters and forgetting some of the broader generalizations it had learned. This phe-
nomenon is known as “catastrophic forgetting” (French, 1999), where domain-specific data 
overrides essential general knowledge. In the context of LLMs, Luo et al. (2023) conducted 
an empirical investigation and discovered that catastrophic forgetting is prevalent when fine-
tuning LLMs such as Llama-7b and Alpaca-7B. Additionally, Zhai et al.  (2023) found that 
fine-tuning multi-modal LLMs can lead to increased hallucinations. In the context of edu-
cation, this could hypothetically mean that fine-tuning a base model on mathematics text-
books, for instance, could overly specialize the model in mathematics and cause it to give 
less helpful or even inaccurate responses in other subject areas. This would not necessarily 
be a problem if the model were used specifically for tasks like evaluating the correctness of 
mathematical answers or providing hints to students on mathematical problems. The issue 
would arise if the model is expected to also act holistically in a tutoring setting and handle a 
wide range of subjects requiring complex reasoning, as it might then fail to be an effective 
tutor.

The domain-specific dataset used for fine-tuning is typically collected either from a 
platform the LLM developers had already created or surveys, which can give rise to mea-
surement bias. Measurement bias has been studied extensively in educational data, which 
commonly has a nested, multilevel structure because students are observed within class-
rooms, or each student might be given a different subset of questions for a standardized 
test (Jak et al., 2014). This type of measurement bias can be detected using structural equa-
tion modelling (SEM) with respect to different attributes, including student demographics, 
teacher demographics and classroom characteristics. Another example of measurement 
bias can arise from unexpected (and possibly unobserved) patterns in the data collection 
process. For example, Ogan et al. (2012) examined how an intelligent tutoring system (ITS) 
was used in classrooms in Latin America and found that many students worked collabora-
tively to solve problems, even though the system was designed for individual use. This can 
create measurement bias in ITS data that could be used for fine-tuning an LLM because 
high performance might be inaccurately attributed to individual students when they were 
actually collaborating.

If direct access to the fine-tuned LLM's internal parameters or embeddings is available, 
learning bias resulting from fine-tuning can be measured using the same embedding- and 
probability-based measures described above. Alternatively, extrinsic bias measures that 
systematically evaluate text generated by a fine-tuned model in response to specific prompts 
can be used (Delobelle et al., 2022). For this output evaluation, the token distribution be-
tween different social groups is compared using distribution metrics, classifier metrics or 
lexicon metrics. Distribution metrics compare the distribution of explicit or implicit mentions 
of social groups to a baseline distribution (Bommasani et al., 2023). These metrics compare 
differences in the percentage of predictions that exactly match the ground truth (ie, exact 
match) (Rajpurkar et al., 2016), or use co-occurrence measures (Bordia & Bowman, 2019) 
to detect variance in group representation. For example, the Perspective API (Google 
Jigsaw, 2024) measures toxicity by providing a toxicity probability for generated text. Sicilia 
and Alikhani (2023) suggested using Score Parity to assess how consistently a language 
model generates text based on certain attributes (eg, toxicity) across different protected 
attributes (eg, demographic groups). Lexicon-based metrics parse generated text at the 
word level, comparing words to pre-defined lists of harmful or biased terms, and assigning 
predefined bias scores to each word. Examples of lexicon-based metrics include HONEST 
(Nozza et al., 2022), which measures harmful words in generated text, and BOLD (Dhamala 
et  al.,  2021), which measures psycho-linguistic norms by assigning affective values (eg, 
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dominance, sadness) to words and calculating text-level norms as weighted averages; 
Gender Polarity (Dhamala et al., 2021) measures the frequency of gendered words in the 
generated text.

Another technique for LLM customization is prompt customization (also called “prompt 
tuning”). This method adapts pre-trained transformers to specific tasks by modifying the 
input prompts rather than changing the model's internal parameters (Liu et al., 2023). It lever-
ages the inherent knowledge within pre-trained models to enhance its task-specific perfor-
mance. Optimized prompt-tuning can be as effective as fine-tuning across models of various 
sizes and across different tasks (Liu et al., 2021). However, this technique can give rise to 
at least three types of prompting bias: majority label bias, recency bias (overemphasizing 
the importance of the latest information), and common token bias (Zhao et al., 2021). These 
can cause pre-trained LLMs to exhibit representation bias towards specific responses: for 
instance, if the final response prompt contains a negative label, it may influence the model 
to predict negative language. To measure prompting bias, Kotek et al. (2023) proposed a 
paradigm to test gender bias in LLMs by using a set of 15 prompts that contain stereotyping 
contexts to evaluate the susceptibility of a model.

Finally, a developer might use information retrieval in the LLM life cycle to generate 
responses grounded in information from relevant data sources, applying a customization 
technique called retrieval-augmented generation (RAG) (Lewis et al., 2020). This tech-
nique allows the model to refer to external information for generating responses using 
two primary types of retrieval: knowledge-based and API-based retrieval. Knowledge-
based retrieval systems store the current context in a “vector store,” an embedding space 
where users can query and find related content similar to the query. This ensures the 
LLM remains up-to-date and contextually relevant to specific downstream tasks. For ex-
ample, a course-specific educational chatbot might use RAG to answer students' ques-
tions based on the official course materials (Hicke et al., 2023). API-based retrieval uses 
external databases, such as learning management systems (LMS) or student enrollment 
databases, to generate responses. This provides additional context, enhancing the qual-
ity of responses to be more personalized and relevant. However, combining LLMs with 
external databases to provide better context can introduce representation bias and mea-
surement bias because of how contextual data is archived or integrated. Additionally, the 
retrieval system often uses ranking algorithms to sort the most similar contexts based on 
the user's query. These ranking systems can introduce learning bias, as they may favour 
certain types of content over others, possibly reducing the level of diversity in the set of 
retrieved documents.

Most LLM developers carefully review and monitor their base models and (to the extent 
possible) their customized models for the potential biases described above. They have for-
malized these checks into a set of technical guardrails for LLMs, which are critical frame-
works and procedures aimed at promoting the ethical, secure, and accountable deployment 
of LLMs. These guardrails include content filters to prevent the generation of harmful or 
inappropriate content, usage monitoring to detect and mitigate misuse, and model tuning to 
reduce biases and enhance fairness. Additionally, technical guardrails may involve imple-
menting privacy-preserving techniques to protect user data and incorporating explainability 
features to make the model's decisions more transparent (Attri, 2023). For example, Meta's 
Llama Guard (Inan et al., 2023) provides a holistic and thorough evaluation framework for 
responsible LLMs, while acknowledging its limitations, including that it focused on English, 
which can cause representation bias in other languages. Once again, as with any customi-
zation that attempts to measure and mitigate issues (eg, applying toxicity classification), the 
ML approach implemented within the technical guardrail is susceptible to measurement bias 
and learning bias.
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Deployment (customized LLM → deployed system)

Once the customization is finalized and the quality of outputs is tested, the model 
can be deployed in various forms based on whether the model is solving NLU, NLG, or 
combined NLU-NLG tasks. When deploying a customized model such as Khanmigo (Khan 
Academy, n.d..) or Rori (Henkel et al., 2024), there can be a gap between the problem that 
the system was originally designed to address and the way it is used in practice, a so-called 
deployment bias. Deployment bias can be observed as a difference in application usage and 
performance across populations (Gallegos et al., 2024). For example, the study of students 
in South America using an ITS collaboratively, instead of individually as intended by the 
system designer, exemplifies the importance of deployment bias in authentic educational 
contexts (Ogan et al., 2012).

The deployment step in the LLM life cycle is particularly important because of the 
potential harm arising from human-computer interaction. When LLMs are used as “con-
versational agents” (Perez-Marin & Pascual-Nieto,  2011), they can “speak” in natural 
language, a primary mode of human communication. As a result, users might anthropo-
morphize these systems, viewing them as human-like, which can lead to overreliance or 
unsafe use. This presents a critical issue in education. For instance, if students over rely 
on an ITS because it appears adept at generating empathetic and expert responses, they 
may place undue trust in potentially unethical, unverified, or hallucinated information it 
generates. Students could be misled and engage in irresponsible academic practices. 
Another issue to consider with deployed LLM-based systems is how they might influence 
people's communication patterns. AI has been found to enhance communication effi-
ciency and positive emotional expression, leading to closer and more cooperative inter-
personal perceptions, but its use in conversations can be socially stigmatized and result 
in social harm (Hohenstein et al., 2023).

Finally, as LLMs are increasingly used to generate text, it is inevitable that text corpora 
used for training and customizing future models will include significant amounts of text 
generated by previous LLMs, rather than human authors. This may inadvertently amplify 
historical and representation biases that remained unaddressed in current LLMs (Wang 
et al., 2024), or biases that arise from who is predominantly generating text using LLMs and 
for what purposes. The continued induction of LLM-generated text into the population of all 
texts in the world will “pollute” datasets that represent human language, but it will also reflect 
the continuously evolving nature of language.

(Optional) LLM input to a larger model

Customized LLMs can be utilized by taking their outputs as inputs for more extensive 
machine learning frameworks. For example, an LLM can be used to assess students learning 
behaviours and status (eg, whether they experience confusion or have misconceptions 
that prevent them from solving a problem) (Li et al., 2024). Combining the NLU and NLG 
capabilities of LLMs can enable applications such as automated essay grading systems, 
which evaluate essays and give natural language feedback on aspects including statistical 
measures (eg, length and sentence complexity), stylistic elements (eg, syntax, grammar, and 
punctuation), and content quality (eg, accuracy, coherence, and key concept articulation) 
(Ramesh & Sanampudi, 2022). The prevalence of AI-generated content that could potentially 
influence student writing raises an emerging consideration about the ethics of AI plagiarism. 
For instance, LLMs can be used in an automated essay grading system to extract key 
features from student essays (NLU) and produce synthetic text (NLG) that can be used to 
check for originality against the student's work.
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DISCUSSION

The life cycle of traditional machine learning applications, which focus on predicting 
predefined labels, is well understood (Suresh & Guttag, 2021). Biases are known to enter at 
various points in this life cycle, and methods to measure and mitigate these biases have been 
developed and tested, including in the context of education (Baker & Hawn, 2022; Kizilcec 
& Lee, 2022). However, with the increasing adoption of LLMs and other forms of generative 
AI in education, current evaluation approaches do not adequately address needs specific 
to supporting educational goals (Anthis et al., 2024; Denny et al., 2024; Yan et al., 2024). 
We introduce a framework for understanding the LLM life cycle, using domain-specific 
examples in education to highlight opportunities and challenges for incorporating NLU and 
NLG supports into education technology applications. We identify the potential sources 
of bias at each step of the LLM life cycle and discuss them in the context of education. 
This offers a framework for understanding where potential harms of LLMs might arise for 
students, teachers and other users of generative AI technology in education, which can 
guide approaches to bias measurement and mitigation.

Considering the important role of language in teaching, learning and other educational 
activities, LLMs will inevitably be part of AI-based educational decision support systems 
(AI-EDSS). For educational practitioners and policymakers, it is crucial to be well aware of 
the types of biases that can originate from various steps in the LLM life cycle. The life cycle 
perspective can offer them a heuristic for asking technology developers to explain each step 
to help them assess the risk of bias and potential harm. We have argued that measuring the 
biases in systems that use LLMs is more complex than in traditional ML, primarily because 
evaluating NLG is highly context-dependent; what constitutes good feedback on a home-
work assignment, for instance, can vary widely. Education technology developers can play 
a significant role in collecting and curating datasets for LLM evaluation and benchmarks, 
which can be combined with collections of educational content scraped from the Internet 
and filtered for quality, such as the FineWeb-Edu dataset (Lozhkov et al., 2024). To further 
tailor LLM-based systems for specific educational applications, participatory design meth-
ods to quickly prototype and collect feedback have been shown to work well in a holistic, 
evaluation-driven design approach, such as in the LearnLM project between Google and 
Arizona State University (Jurenka et al., 2024).

In developing the proposed framework, we reviewed how NLP research has approached 
bias and fairness issues, especially recent work with LLMs and we identified a few broader 
challenges. First, most evaluation protocols and objective functions are built with short feed-
back cycles, which is especially problematic in educational contexts that aim to support 
students' long-term growth as critical thinkers and problem solvers. This contrast is exempli-
fied by the fact that most current evaluation methods examine just an isolated model output 
(single-turn), instead of an entire conversation (multi-turn), let alone evaluating how a con-
versation impacts future opportunities to demonstrate a deeper understanding of the topic.3 
Recent work using NLU to parse tutoring conversations to provide teachers with targeted 
feedback shows promise by moving towards a more holistic evaluation of multiple single-
turn exchanges in a longer conversation (Demszky et al., 2023; Wang & Demszky, 2024). 
As the popularization of LLMs around 2023 happens to coincide with a broader movement in 
education to expand direct tutoring offerings (Loeb et al., 2023), it raises important questions 
about the effectiveness and responsible use of LLMs for on-demand tutoring, including as 
part of an ITS (D'Mello & Graesser, 2023).

Second, while this article focuses on understanding the sources of potential harms of 
LLMs in education, there is an important trade-off between those potential harms and the 
potential for substantial benefits that LLM-based education technologies can provide for 
students, teachers and their communities. We advocate for measuring and mitigate biases 
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in LLM-based systems, but at the same time, we must carefully consider the opportunity 
cost of delaying the adoption of systems that use LLMs due to concerns about bias. It is 
important to recognize that while LLMs can make errors or exhibit biases, they may actually 
be more accurate and consistent (and thus fairer) than humans (Kahneman et al., 2021), and 
their benefits can scale to much larger numbers. Many students receive little to no feedback 
on the assessments they complete, especially open-ended questions and longer pieces 
of writing. Providing access to instant feedback can significantly benefit students (Meyer 
et al., 2024), especially those in under-resourced environments, thereby potentially reducing 
achievement gaps and enhancing overall educational equity. We should not wait until LLMs 
are 100% free of bias, which is an unattainable goal to begin with (Anthis et al., 2024). We 
encourage education technology providers to responsibly explore innovations with LLM and 
large multi-modal model (LMM) technology to create more scalable engaging and effective 
learning experiences.

A third challenge we identified is the tensions between fairness and personalization. Most 
current research evaluates fairness as the uniformity of outputs across social groups or de-
tects the prevalence of group-specific biases (Gallegos et al., 2024; Liang et al., 2023). This 
demands that students with comparable academic preparation and progress receive equiv-
alent responses from LLMs, irrespective of their social identities, as in traditional machine 
learning contexts (Kizilcec & Lee, 2022). However, the complexity of social identities makes 
achieving absolute fairness an impractical goal and compromises are often needed to benefit 
from generally useful LLM applications at the cost of minor biases (Bell et al., 2023). There is 
a tension between two desirable but ostensibly incompatible properties of LLM applications: 
fairness, which demands that similar queries/students receive the same responses, and 
personalization, which encourages responses to be non-generic and tailored to students' 
needs. The pursuit of fairness might be at odds with the goal of personalized learning, which 
requires that LLM responses be customized to students' sociocultural backgrounds and indi-
vidual needs, beyond accounting for their academic profiles (Anthis et al., 2024). Moreover, 
even if an LLM application could provide perfectly fair and personalized responses to stu-
dents from different social backgrounds, such personalization might inadvertently widen ex-
isting gaps, as those already advantaged could benefit disproportionately from algorithmic 
support, thus challenging certain notions of fairness and equity (Dumont & Ready, 2023). 
Addressing these tensions presents a rich area for future research, which could clarify the 
philosophical and conceptual complexities of fairness in education when AI can provide 
highly personalized learning experiences, and establish an empirical foundation for evaluat-
ing and optimizing LLMs with fairness objectives in this context.

We note three limitations related to the proposed LLM life cycle framework. First, while 
we attempted to provide a holistic and complete account of the life cycle, there may be vari-
ations in the process of application development that are captured neither in Phase 1 nor 2. 
We still envision this framework to facilitate the identification and communication of biases, 
and to serve as a foundation to build on as the predominant life cycle may evolve. Second, 
the proposed framework does not provide guidance on the severity of harms that can re-
sult from various biases, because (a) any harms need to be evaluated in context, and (b) 
there have been too few studies to date that have demonstrated different kinds of biases in 
LLM-based applications in education. Third, while we highlight potential measures for each 
bias, this work does not comprehensively review bias measures and mitigation strategies for 
LLM-based applications in education.

We conclude with three recommendations for future research on LLMs in education. 
First, there is a need for education-focused benchmark datasets that better represent a 
broader range of sociodemographic groups across the world, especially considering that 
applications like Khanmigo are expected to be used by a diverse group of students and 
teachers (Gallegos et  al.,  2024). Additionally, there is a need for high-quality education 
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datasets for pre-training and fine-tuning models (Kwak & Pardos,  2024; Li et  al.,  2023; 
Lozhkov et al., 2024). Second, there is a need to develop a specific taxonomy of harms for 
LLMs in educational contexts that promote responsible use and highlight the perspectives 
of educators, students and their families. Current taxonomies tend to be domain-agnostic 
and developer-centred (eg, Weidinger et al. (2022)). Finally, there appears to be a signifi-
cant opportunity to use high-quality human feedback from multi-turn scenarios to improve 
the efficacy and alignment of LLMs with educational objectives (Chung et al., 2024; Zhou 
et al., 2024), for instance, to refine them for specialized tasks such as math tutoring (Jurenka 
et al., 2024).
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