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ABSTRACT

Predictive models of student success can provide timely in-
formation to inform interventions in K-12 and higher edu-
cation. However, the design and implementation of these
predictive models require various stakeholders to make de-
cisions about the prediction target, data sources, process-
ing, training, models, and deployment strategies. These
choices are often poorly documented in the scholarly lit-
erature, even when code is openly available, limiting our
ability to generalize and translate research findings to other
institutions or contexts. More importantly, it obfuscates
the potential trade-offs of decisions that are made with re-
spect to prediction performance and other objectives, such
as group fairness criteria. To address these challenges, we
advocate for a multiverse approach in student success mod-
eling and demonstrate the approach using a case study. In
the multiverse framework, each plausible choice made to re-
fine the problem space results in separate analyses being
completed (each being referred to as a “universe”), with the
final result being the collection of all universes explored. We
demonstrate the mechanics and merits of this approach by
building a first-year retention model for higher education.
We interpret the findings of this analysis, specifically con-
sidering both model goodness-of-fit and fairness by group,
demonstrating the value of the multiverse technique in en-
gaging education-specific stakeholders—from administrative
supervisors to model developers—in making predictive mod-
els that are robust, reproducible, and equitable.
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1. INTRODUCTION

Although cutting-edge machine learning (ML) models have
been developed for student success prediction with increas-
ing performance in different decision-making scenarios [5,
44, 29], the complexity and lack of transparency in the tech-
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nical pipelines hinder their replicability and generalizability
across different contexts [35]. Stakeholders involved in the
process of model development and deployment encounter
numerous choices from prediction target selection, feature
inclusion, handling of missing values, model selection, and
more, which can significantly influence the predictive per-
formance and also group fairness of the final model [27, 19].
In most studies, researchers make numerous decisions re-
garding data processing and model settings but only present
their findings based on the final chosen configuration. This
practice raises concerns regarding the transparency and ro-
bustness of study findings [39, 20, 10, 45]. Additionally, it
prompts questions about which decisions or choices impact
the results significantly [34, 39, 11].

With a systematic way to address these decisions macro-
scopically, researchers can better understand the effect of
decisions on model performance and fairness and reflect the
intrinsic correlations (inherent relationships among various
factors that affect a model’s performance and fairness) of
these choices to confidently develop powerful and equitable
ML models [37]. In this work, we apply the multiverse anal-
ysis, a method that systematically explores a range of plau-
sible analytical decisions, to predictive models of student’s
re-enrollment [39]. This approach enables us to quantify
the impact of various administrative, data processing, and
model tuning decisions on both model performance and fair-
ness metrics. By generating and evaluating thousands of
model specifications, we provide insights into the trade-offs
between performance and fairness associated with different
decision pathways. Our main contributions are:

1. Demonstrating the application of the multiverse analysis
technique in educational ML models through a case study
2. Evaluating the effect of decisions on the performance of
models through multiverse analysis

3. Assessing the effect of decisions on model fairness using
multiverse analysis

This approach enables a comprehensive understanding of
how various decisions by distinct stakeholders influence pre-
diction outcomes, facilitating the development of more ro-
bust, equitable, and reproducible ML models in education.
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Figure 1: Specification Curve Analysis of Different Multi-
verses (dots) for Number of Extra Deaths by Hurricanes vs.
Unique Specification of Decisions, from Simonsohn et al. [37]

2. MULTIVERSE ANALYSIS TECHNIQUE

2.1 Overview

Researchers often encounter a multitude of choices in data
processing, experimental design, metric choices, and anal-
ysis methods and as a result, there are many decisions to
make for a transparent and robust research [39, 20, 45,
10]. This issue of choice has led to the rise of the multi-
verse analysis technique. In multiverse analysis, researchers
make every plausible combination of dataset decision, data
processing, model specification, etc. Each combination of
decisions represents a possible universe of outcomes. The
researchers can then analyze results aggregated across these
unique universes of research [8], increasing the transparency
of the research and by identifying key choices that result in
the conclusions [39].

The most well-known application of the multiverse analysis
comes from Simonsohn et al. [37] who were following up
on a report by Jung and colleagues [21] on the relationship
between the names of hurricanes and their level of casualty.
In the original work by Jung and colleagues, six decades
of death rates from US hurricanes show that those hurri-
canes that were feminine-named caused significantly more
deaths than masculine-named hurricanes, an effect they at-
tributed to the public not perceiving feminine-named storms
as dangerous as those which were masculine-named. Simon-
sohn et al. [37], however, reconsidered the research through
the lens of over 1,700 unique analytical decisions including
those dealing with “which storms to choose” and “the type
of regression models” [37]. From this set of choices, they
selected 300 specifications — individual groups of parame-
ter value that were plausible given the research question at
hand — and plotted the number of extra deaths versus each
specification, where each dot on the curve depicted the es-
timated additional fatality of a hurricane with a feminine
name rather than a masculine name (figure 1). The curve
showed that the vast majority of specifications had an esti-
mated additional deaths larger than 0, providing additional
evidence that hurricanes with feminine names are deadlier
[37]. This work demonstrated that, while there are rea-
sonable choices a researcher might make that could show
masculine-named hurricanes result in more casualties, there
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was more evidence that supported the conclusions of Jung
et al. when the cases were considered more systematically.

Researchers have also applied multiverse analysis in vari-
ous other fields including psycholinguistic research, vocab-
ulary research, and corpus research [26]. For instance, in
psycholinguistic research, Maie et al. [26] created 162 dis-
tinct universes by varying processing steps to reveal that
evidence for implicit knowledge development was sensitive
to the data-processing choices. In vocabulary research [26],
they applied multiverse analysis to generate 54 universes
based on decisions such as “how to define outliers” and “how
to treat pretest scores in modeling”, and their findings sug-
gested that different combinations of choices could lead to
varying conclusions about the effectiveness of repeated ex-
posure on vocabulary learning. In corpus research (study of
language through large collections of authentic text), Maie
et al. [26] applied multiverse analysis to the dataset used
originally in Eguchi et al. [12]’s study, by exploring differ-
ent analytical choices, such as factor extraction methods and
criteria for determining the number of factors. The varia-
tions of choices led to variations in results, but together
they more robustly demonstrated that lexical sophistication
factors explain a significant portion of variance in oral pro-
ficiency scores, as claimed in the original study.

Despite the fact that multiverse analysis is a well-established
technique to enhance analytic rigor, and the need to bet-
ter understand how research choices impact predictive mod-
els in education, we could not find any prior research that
has applied multiverse analysis in educational data mining,
learning analytics, or in the learning sciences.

2.2 Procedure

As researchers have to make choices about parameters at
different levels, multiverse analysis generally consists of (1)
a data multiverse and (2) a model multiverse [39]. The data
multiverse classifies the universes based on data processing
parameters. Researchers decide what kind of data to include
and what methods to use to filter the dataset. For instance,
Steegen et al. studied a data multiverse created by decisions
like “assessment of relationship status” (by assigning an in-
teger value) and “exclusion of women based on cycle length”
to create a total of 210 combinations of universes for analysis
[39]. The model multiverse investigates different modeling
assumptions or modeling methods to arrive at analytic re-
sults [39]. An example of model multiverse analysis comes
from Patel et al. [31], who examined 417 variables’ associ-
ations with all-cause mortality, demonstrating the choice of
predictors and co-variates can significantly impact the asso-
ciations.

While the multiverse analysis has predominantly been ap-
plied for data analysis, some researchers have also extended
it for data-collection purposes. Harder [16] used an adapta-
tion of multiverse analysis to analyze 19 studies on shooting
decisions with varied data-collection methods such as par-
ticipant sample size. The multiverse analysis demonstrated
how different data-collection choices can influence the even-
tual research outcome, highlighting the robustness of the
finding.

Multiverse analysis can be extended to the process of hyper-



parameter optimization in ML. Common hyper-parameter
optimization employs techniques such as grid search and
Bayesian optimization to explore the optimal configuration
for an ML model systematically [6]. Multiverse analysis in
hyper-parameter optimization relies on the ideas of these
common techniques with variations of parameter values, and
it is similar to the model multiverse discussed above. In
this case, the model specifications are tied to the parameter
values for the ML models rather than the traditional sta-
tistical modeling. Beyond hyper-parameter optimization,
integrating multiverse analysis with ML models generally
involves a mixture of data multiverse (data processing) and
model multiverse (hyper-parameter choices and evaluation
metrics). This comprehensive approach allows researchers
to understand how combinations of decisions at different lev-
els can affect the model’s performance and robustness. For
example, Wayland et al. [46] contributed to the PRESTO
framework which utilizes multiverse analysis to map latent
representations in ML models.

2.3 Distinction from Grid Search

Traditional grid search is a prevalent method for hyper-
parameter optimization in machine learning. It systemat-
ically evaluates a defined set of parameter combinations to
identify the configuration producing the best performance
metric, often treating the model as a black box without
considering the broader modeling decisions [6]. In contrast,
multiverse analysis extends beyond hyper-parameter tuning
by systematically exploring a wide array of plausible choices
of different stakeholders, including the configuration of the
dataset, data preprocessing steps, model architectures, and
evaluation metrics. This comprehensive approach assesses
the robustness and variability of results across different rea-
sonable analytical decisions at different levels, and hence im-
proves transparency and reproducibility in machine learning
research [4].

3. THE EDUCATIONAL CONTEXT

Educational data mining includes a broad range of tasks
such as predicting student performance [13, 23], identifying
at-risk students [25, 47], analyzing student engagement pat-
terns [14, 24], and personalizing the learning experience [17].
Incorporating multiverse analysis into these studies has the
potential to deepen our understanding of how different ana-
lytical decisions impact findings, leading to more robust and
generalizable conclusions.

Predicting student success is a fundamental challenge in K-
12 and higher education [32], with practical value for indi-
vidual classrooms all the way to full school districts [1]; a
large amount of educational data mining research has been
centered on predictive modeling and learning analytics. For
example, learning analytics tools often use real-time student
engagement and performance metrics from learning manage-
ment systems to help individual faculty identify which stu-
dents may be struggling at a given time, thereby informing
in-time outreach and tailored instructional changes to help
every student succeed [36, 1]. At a programmatic level ad-
ministrators use similar approaches to forecast enrollment,
degree completion, and performance, enabling institutions
to develop strategies that enhance retention and graduation
rates, particularly among underrepresented groups [42].
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In the context of educational ML models, various stakehold-
ers are involved in decision-making processes that signifi-
cantly impact data handling and model development. At
the highest level, there are administrators who oversee the
dataset and research directions, making critical decisions
such as determining the range of data to include, decid-
ing whether to include sensitive characteristics like race and
sex, as well as assessing whether to include data collected
during the COVID-19 pandemic. These decisions often in-
volve legal and ethical considerations directly related to the
persons of interest, namely the students. The National Cen-
ter for Education Statistics (NCES) requires educators to
be aware of regulations and practices regarding data col-
lection and reporting [28]. The second-level stakeholders
are data scientists and analysts who typically operational-
ize data cleaning based on the decisions of the high-level
administrators. Their work includes considerations such as
how missing values are handled and determining the propor-
tion of datasets used for training and validation. This role is
crucial in preparing data for subsequent modeling and anal-
ysis [28], and these stakeholders often have a wide variety of
techniques available in the changing technology landscape.
The third-level stakeholders are machine learning engineers
who generally share similar responsibilities to data scientists
but often at a more technical or infrastructure level. Here we
will classify data scientists as individuals who conduct data
processing tasks, including encoding, scaling, and sampling,
while machine learning engineers focus on building and tun-
ing machine learning models. As we briefly discussed in the
previous section, machine learning engineers have to choose
an optimal model and corresponding hyper-parameters to
build a model.

Each stakeholder’s decisions play a vital role in ensuring a
powerful and ethical ML model. With this span of choices
at different levels, it paves the way for the application of
multiverse analysis.

4. METHODS

As the name implies, multiverse analysis focuses on experi-
menting with multiple universes. Hall et al. [15] explained
the basic elements in multiverse analysis, where a universe
is one of the analyses conducted in the multiverse analysis
report. A parameter is a characteristic that varies across
the multiverse, and a parameter value is a value that the
parameter can take. Each combination of parameter values
defines a unique universe. Hall et al. [15] provided a simple
example: a paper proposes three methods to handle outliers,
(1) no exclusion, (2) excluding data 2 Standard Deviations
(SDs) from the mean, and (3) excluding data 3 SDs from the
mean. Here, the method to handle outliers is the parameter,
and each of the three methods is a parameter value for this
parameter. Each of the parameter values (potentially com-
bined with parameter values for other parameters) defines a
particular universe. Each of the analysis reports also has an
outcome, which could be the p-value in the previous example
[15]. The outcomes are analyzed in an aggregate manner.

4.1 Data Overview

The dataset used in this study contains de-identified infor-
mation about enrolled students at a public research univer-
sity in the United States with over 30,000 students for ap-
proximately three decades. Because of the enormous amount



of raw data (over 400k entries), we processed them by se-
lecting a fifteen-year time span that covers students enrolled
between Fall 2007 and Fall 2022, which results in a dataset
with roughly 100k entries.

4.2 Prediction Target

For this work, we chose a single target goal: predicting if
a first-year student would re-enroll at the institution in the
subsequent fall semester. This target had a binary value
of yes/no (represented as 1/0) without any missing values.
Whether a student re-enrolls next fall is calculated by check-
ing if the dataset contains enrollment information for the
student in that particular semester. Roughly 98% of stu-
dents in our dataset re-enrolled.

We then processed the dataset with features that can rep-
resent a student and indicate a student’s potential college
success such as GPA and test scores [40, 7, 38]. There
are seventeen features in total, and some notable features
we calculated include the student’s cumulative GPA at the
institution before next fall, whether a student is a first-
generation college student, the declared major of the stu-
dent, the number of credits taken in the first year, and the
aggregated /converted SAT scores.

4.3 Parameterizing the Multiverse

We applied multiverse analysis in three progressive stages,
each one aligning with our different groups of stakeholders:
(1) administrative decisions, (2) data processing decisions,
and (3) ML model tuning decisions. The choices selected
for administrative decisions are relevant because of legal and
ethical issues [9], while the choices for data processing and
ML models are commonly faced by researchers [33]—they
are arbitrarily picked for demonstration in this work. In
total, we examine 11 decisions for the re-enrollment target
(Table 1), yielding 6,912 choice combinations for our multi-
verse analysis.

Administrative decisions include (i) whether to include trans-
fer students, (ii) whether to include students enrolled during
the COVID period (winter 2020 term to winter 2022 term),
(iii) whether to include the student’s sex information in the
features for training, and (iv) whether to include the stu-
dent’s race information in the features for training.

Data processing decisions include (i) how to handle missing
values, either by dropping them or using a simple imputa-
tion of the most frequent values, (ii) the size of the training
data for the train-test split, with 70% or 80% being selected
as examples in this case study, (iii) whether to use one-hot
encoding or ordinal encoding of non-ratio data, (iv) whether
a standard scaling method is used, and (v) whether the bal-
ance sample through use of over-sampling techniques (in this
study, SMOTE), under-sampling techniques (NearMiss), or
no sampling (full training dataset only).

Machine learning model tuning decisions simply include (i)
the choice of classifier employed, and we reduce this to the
set of random forest, gradient boosting classifier, or logistic
regression, and (ii) one parameter for each of the classifieries,
such as the n_estimators of 50, 100, 150 for random forest,
the learning rate of 0.01, 0.1, 1 for gradient boosting classi-
fier, and a C value of 0.01, 0.1, 1 for logistic regression.
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Table 1: Overview of the Parameter Space with Stakeholders

Stakeholders Parameter Choices
Administrators | Include True vs. False
Transfer
Data
Administrators | Include True vs. False
COVID
Data
Administrators | Include Sex True vs. False
Administrators | Include Race | True vs. False

Data Scientists | Handle NaN | Drop vs. Impute

Data Scientists | Train Size 70% vs. 80%

Data Scientists | Encoder One Hot Encoder vs.
Ordinal Encoder

Data Scientists | Scaler Standard Scaler vs. None

Data Scientists | Sampler SMOTE; NearMiss; None

ML Engineers Classifier Random Forest;
Gradient Boosting;
Logistic Regression

ML Engineers Hyper- N_estimators - Random For-

parameters est: 50 vs. 100 vs. 150;

Learning Rate - Gradient
Boosting: 0.01 vs. 0.1 vs. 1;
C - Logistic Regression: 0.01
vs. 0.1 vs. 1

4.4 Training & Testing

With the parameter space defined above, the training of
the multiverse fits a scikit-learn pipeline based on the spec-
ification of the parameters, the trained model then evalu-
ates the test dataset’s AUC score (the higher the better)
as well as the Equalized Odds Difference (EOD) (the lower
the fairer—smaller difference) concerning sex and race using
the Fairlearn package [41]. The specification evaluations are
aggregated and analyzed in the next section.

4.5 Specification Curve Analysis

After aggregating and sorting the test set results of differ-
ent combinations, we plot specification curves that explicitly
display each parameter’s effect. In multiverse analysis, the
specification curves are sorted along the z-axis according to
the metric of interest (e.g., AUC), with each specification
number representing a unique parameter combination (for a
total of 6,912). The y-axis is the variable of interest (AUC
score or Equalized Odds Difference in case of fairness), and
the different colored curves separate the assignment of one
parameter value of interest. For instance, the specification
curve in figure 2 looks at the goodness-of-fit of models pre-
dicting first-year re-enrollment, specifically comparing the
data scientist’s choice of whether to drop or impute miss-
ing values. Across the 3,500 specifications, we see there is
a general improvement of the model which was trained on
dropped data, as shown by the higher orange line, suggest-
ing that imputation leads to worse quality models for this
task. The specification curves help researchers instantly see
the effect of changing one parameter across the breadth of
other possible choices.

S. RESULTS
5.1 Effect of Sampler

One noticeable discovery of our multiverse analysis is the ef-
fect of employing samplers on the model’s performance and
fairness. The goodness of fit is significantly better when the
model employs an over-sampling technique or does not adopt
any sampler. As demonstrated in Figure 3, AUC scores



AUC of First-Year Re-enrollment Based on Handling of NaN
0.9 1

—— Impute NaN
Drop NaN

0.8

0.7 A

0.6 1

AUC

0.5 1

0.4

0.3

1000 1500 2000 2500 3000 3500

Specification Num

0 500

Figure 2: AUC Based on Handling of NaN
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for the majority of specifications that use SMOTE or no
sampler are about 0.2-0.25 higher than those of NearMiss.
This performance gap is likely accounted for by the fact that
the dataset contains 98% students who re-enrolled, and an
under-sampling process using NearMiss would balance the
dataset by drastically decreasing the size of re-enrolled stu-
dents for training. This extremely small training dataset
results in a worse AUC score. While over-sampling through
SMOTE creates a balanced dataset by fabricating more val-
ues of students not re-enrolled, leading to a slightly higher
AUC score than no sampling at all.

The equalized odds difference (EOD) across sexes of the
re-enrollment target follows a similar trend as the AUC
curves. As shown in Figure 4, NearMiss has a notably
higher EOD value for nearly all specifications than SMOTE
or no sampler. The specification without any sampler has
the lowest equalized odds difference, indicating the fairest
model among the three. This indicates that the model with
SMOTE sacrifices some fairness in exchange for a slightly
better performance in AUC, which is achieved by perform-
ing better in the majority group (males).

On the other hand, the equalized odds difference across dif-
ferent racial groups of the re-enrollment target indicates a
different trend. In Figure 5, the equalized odds difference
of most NearMiss specifications is about 0.3-0.6 lower than
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those of SMOTE or no sampler. Based on the equalized odds
difference here, it seems to suggest that NearMiss is “fairer”
concerning different race groups. However, incorporating
the analysis from the AUC graph 3 reveals that the low
equalized odds difference among races for NearMiss is likely
the result of predicting poorly among all the races. Through
these aggregate plots, the multiverse analysis demonstrates
the interesting effect of samplers/sampling methods on the
model performance and fairness.

5.2 Inclusion of Race

The decision of whether to include race as a feature for
model training and testing is another valuable discovery
from multiverse analysis. The merits of including protected
attributes, such as race, have been debated in the research
literature. Some argue that the inclusion of such traits im-
proves model performance and addresses systemic inequities
[3, 22, 47], while some argue that the inclusion of them is
generally a privacy concern, and likely results in bias against
minority groups [30, 18, 2]. In our study, the exclusion of
races was only narrowly the preferred choice in the multi-
verse analysis.

Specifically, the AUC curves for including race as a feature
and not including race as a feature overlap with each other
as displayed in Figure 6. Since the two curves overlap for
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most of the specifications, it suggests the inclusion/exclusion
of race as a training feature does not impact the model’s
AUC score in this dataset; this finding is consistent with Yu
et al. [47] observations. A similar pattern is observed in
the curves for the EOD among sexes as shown in Figure 7,
demonstrating that the effect of inclusion/exclusion of race
as a training feature on the EOD among sexes is minimal.

On the other hand, the EOD across different racial groups
suggests that the exclusion of races can result in slightly
fairer models, as illustrated in Figure 8. Without including
race as a feature, the equalized odds difference across races
is about 0.1 lower for some of the specifications, suggesting
fairer models with respect to race. This result aligns with the
argument that excluding race from training data prevents
the model from learning and propagating existing societal
prejudices, resulting in a fairer model with respect to race
[43].

Since the AUC and EOD across sexes are about the same
without race as a training feature, and the EOD across races
is slightly improved when excluding race as a feature, it
appears that the exclusion of race does not affect model
performance and slightly improves the fairness with respect
to race—at least demonstrated in the specific context of this
case study.
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6. CONCLUSION

Multiverse analysis offers a powerful lens for evaluating and
improving the robustness, reproducibility, and transparency
of predictive models in education. In our case study on pre-
dicting first-year re-enrollment, we analyzed thousands of
plausible universes of decisions that led to several notable
findings. We saw that sampling strategies—especially over-
sampling and under-sampling—can have significant trade-
offs: while over-sampling through SMOTE often yielded
gains in AUC score, it also increased disparity across certain
subgroups. Similarly, excluding sensitive features such as
race did not degrade predictive performance, but it reduced
performance disparities by race. These findings emphasize
that certain modeling decisions can inadvertently favor one
metric, such as goodness-of-fit, at the cost of another, such
as group fairness.

By systematically examining each decision that the admin-
istrators, data scientists, and ML engineers might make—
ranging from whether to include protected features, to how
to handle missing data and tune hyper-parameters—our mul-
tiverse framework showcased explicitly the interplay among
analytic decisions, model performance, and equity implica-
tions. Beyond just picking “the best” model on a single met-
ric, this approach highlights the need to weigh contextual
and ethical considerations alongside technical performance.

More broadly, our study demonstrates how multiverse anal-
ysis can help education stakeholders see and discuss the in-
herent trade-offs embedded in ML model design. We antic-
ipate that future work will extend this approach to a wider
range of educational prediction tasks in K-12, higher educa-
tion, or lifelong learning with larger or broader datasets to
reveal similarly nuanced decision pathways. Ultimately, the
multiverse framework equips researchers with a systematic
method for constructing learning analytics pipelines that are
robust, transparent, and reproducible, thereby better sup-
porting effective interventions and policies aimed at improv-
ing student success.
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APPENDIX

Code for this paper is accessible at: https://github.com/
educational-technology-collective/multiverse-code



