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ABSTRACT
Modern machine learning increasingly supports paradigms that are
multi-institutional (using data from multiple institutions during
training) or cross-institutional (using models from multiple insti-
tutions for inference), but the empirical effects of these paradigms
are not well understood. This study investigates cross-institutional
learning via an empirical case study in higher education. We pro-
pose a framework and metrics for assessing the utility and fairness
of student dropout prediction models that are transferred across in-
stitutions. We examine the feasibility of cross-institutional transfer
under real-world data- and model-sharing constraints, quantifying
model biases for intersectional student identities, characterizing
potential disparate impact due to these biases, and investigating the
impact of various cross-institutional ensembling approaches on fair-
ness and overall model performance. We perform this analysis on
data representing over 200,000 enrolled students annually from four
universities without sharing training data between institutions.

We find that a simple zero-shot cross-institutional transfer proce-
dure can achieve similar performance to locally-trained models for
all institutions in our study, without sacrificing model fairness. We
also find that stacked ensembling provides no additional benefits to
overall performance or fairness compared to either a local model or
the zero-shot transfer procedure we tested. We find no evidence of
a fairness-accuracy tradeoff across dozens of models and transfer
schemes evaluated. Our auditing procedure also highlights the im-
portance of intersectional fairness analysis, revealing performance
disparities at the intersection of sensitive identity groups that are
concealed under one-dimensional analysis.1

1Code to reproduce our experiments is available at https://github.com/educational-
technology-collective/cross-institutional-transfer-learning-facct-2023.
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1 INTRODUCTION
Improvements in digital infrastructure have enabled numerous
applications of machine learning across domains but in decentral-
ized organizational contexts (e.g., universities, schools, hospitals,
finance, and government), the capacity to use machine learning
typically depends on the availability of local infrastructure and
resources. Under-resourced institutions may therefore be unable
to reap the full benefits of machine learning applications despite
commonly having the greatest need. Externally developed mod-
els have increasingly been adopted in these cases to address this
challenge. While this highlights a potential benefit of sharing pre-
dictive models within large-scale cross-institutional collaborations,
the risks and benefits of cross-institutional modeling are not well
understood, particularly in terms of the potential impact on the
most vulnerable populations affected by these models.

We investigate the benefits and risks of cross-institutional trans-
fer in the context of an important and pervasive application of
machine learning in education: university student dropout predic-
tion. Every year, over one million students drop out of college in the
United States, and they are 100 times more likely to default on their
student loan payments than those who graduate [46]. This leaves
young adults with a major financial burden and little to improve
their job prospects with an incomplete degree [66]. Dropout rates
are especially high for students from minority groups2, exacerbat-
ing existing inequities.

2https://nces.ed.gov/programs/raceindicators/indicator_red.asp
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Figure 1: Summary of cross-institutional transfer methods
evaluated in this work (transfer methods defined in Section
4.3). Each point represents one cross-institutional transfer
trial (see Section 6) with an 𝐿2-regularized logistic regression
model. (See Figure 7 for results with LightGBM,MLPmodels.)

Lowering college dropout rates is a priority for many institutions
of higher education. U.S. federal regulations incentivize colleges and
universities to reduce dropout by requiring them to report dropout
rates, performance-based funding [37], and college rankings that
account for graduation rates [3]. This has led an increasing number
of colleges and universities to adopt data-driven predictive models
to identify at-risk students, in order to intervene early enough to
support students before they drop out. While private vendors such
as Civitas, Starfish Retention, and Hobsons sell software for at-risk
prediction to institutions, they do not share the technical details
of underlying models. This limits the ability of practitioners and
researchers to audit the performance and possible biases of these
models’ predictions, especially for institutions other than those
where models were trained [8, 49].

Concerns about algorithmic bias in education have motivated
several recent studies that interrogate the fairness and ethics of pre-
dictive modeling in education [33, 49, 54, 76, 77]. Inter-university
data partnerships, such as the Unizin Consortium3, have also
emerged to standardize data infrastructure, provide opportuni-
ties for multi-institutional model development by using data from
multiple institutions during training, and even facilitate cross-
institutional model sharing. However, the benefits and risks of this
form of transfer learning are presently understudied, and studying
cross-institutional learning in a research context can be challeng-
ing due to data privacy regulations: in most circumstances, student
data cannot simply be shared between institutions or uploaded into
public repositories due to federal regulations.

In this work, we seek to evaluate the implications for model
performance and fairness of three approaches to cross-institutional
transfer learning. We conduct the first large-scale, systematic anal-
ysis of cross-institutional transfer learning in higher education. We
evaluate three transfer approaches (Section 4.3) motivated by real-
world data, collaboration models, and institutional needs in higher
education. We use datasets from four U.S. universities with diverse
student populations (Section 4.1), propose metrics to evaluate model

3https://unizin.org/

performance and fairness in cross-institutional transfer learning
(Section 4.4), conduct a comprehensive set of experiments to mea-
sure the effects of different transfer approaches on the proposed
metrics in terms of (a) overall performance (Section 6.1) and (b) fair-
ness measured by intersectional performance disparities (Section
6.2), and evaluate fairness-performance tradeoffs (Section 6.3). Our
main results are summarized in Figure 1. We discuss limitations
and recommendations for future work in Section 7.

Our contributions:While prior research has explored predic-
tion models based on multi-institutional educational datasets, to
our knowledge, our work is the first to systematically investigate
the implications of cross-institutional transfer learning for fairness
and equity. This work required a year-long effort working with
each institution to develop a common data schema to map their
local data into this schema to enable cross-institutional learning.
We contribute a novel methodology for auditing cross-institutional
transfer learning, including metrics for measuring intersectional
fairness of model transfer. Finally, our empirical results provide
a useful benchmark for researchers and practitioners interested
in cross-institutional transfer learning both within and outside of
the domain of education. Our results demonstrate that (i) cross-
institutional transfer is feasible even when no historical training
data is present at a target institution (e.g., via direct or voting trans-
fer); (ii) a simple zero-shot voting transfer method achieves similar
performance to a local model for all institutions in our study, with-
out requiring any local training data and at no cost to fairness;
(iii) stacked ensembling provides no additional benefit over local
training or zero-shot voting transfer from other institutions; and
(iv) there does not exist a strict empirical tradeoff between fairness
and accuracy across our broad set of models, transfer schemes, and
institutions evaluated.

2 RELATEDWORK
2.1 College Dropout Prediction
Higher education institutional data are increasingly used for re-
search and applications to predict and explain factors contributing
to student dropout [51, 71]. These models and applications, often
in the form of early warning systems, can help identify which stu-
dents might be struggling and at what time in their academic jour-
ney. This information can be used to provide proactive, targeted
support or interventions. Several previous studies have investi-
gated the task of dropout prediction in higher education [4, 6, 10–
12, 17, 24, 25, 40, 42, 57, 76]. These studies are conducted across
different institutional contexts, but the core learning problem they
address is framed as a binary classification task, where structured
features about students’ educational history, demographics, or aca-
demic records in the early phase of college are extracted from
administrative data to predict dropout/persistence at a later stage.
Learned models are evaluated using binary classification metrics
and state-of-the-art models using students’ pre-college character-
istics and early college records can predict whether a student will
drop out within the first year with an AUC-ROC between 0.7 and
0.9 across various countries and institutions [4, 11, 12, 17]. These
promising results have continued to motivate research into dropout
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prediction modeling to aid student support services and institu-
tional policy-making. However, there has been little research that
empirically examines cross-institutional dropout prediction.

2.2 Disparate Impacts and Fairness-
Performance Tradeoffs in Machine Learning

A great deal of prior work has explored both empirical and al-
gorithmic approaches to “fairness” in machine learning, which is
often concerned with how an objective function or conditional risk
estimate varies across subgroups [19]. The current study is most
closely related to previous works that explore the disparate impact
of machine learning methods, and the interaction between fairness
and predictive performance in machine learning.

Recent work finds that different learning techniques and con-
texts can result in a disproportionate impact on subgroups, even
when these techniques are not explicitly targeted toward subgroups
in any way, and even when they improve some average measure(s)
of performance. Disproportionate impacts have been demonstrated
in the use of differential privacy [7], model compression [38], model
simplification [50], selective classification [43], synthetic data gener-
ation [18], under the presence of feature noise [48], and in repeated
(i.e. multi-round) loss minimization [36].

There have been some formal analysis of potential tradeoffs be-
tween fairness and various measures of model performance [23,
29, 76], but our theoretical understanding remains limited in many
areas. Empirically, however, there is some evidence that there are
no strict tradeoffs between model performance and fairness un-
der certain conditions. For example, Rodolfa et al. [64] finds that
fairness-enhancing interventions across policy programs in educa-
tion, mental health, criminal justice, and housing safety improved
fairness with negligible effects on model accuracy. In education, a
recent study found no evidence of a strict tradeoff between model
performance and fairness predicting dropout from massive open
online courses Gardner et al. [33]. However, the degree to which
these findings apply to university student dropout or retention
models is unknown.

Research on algorithmic fairness in education has mostly inves-
tigated whether supervised learning models trained on the entire
student population generate systematically biased predictions of in-
dividual outcomes such as correct answers[27], course grades [77],
university [76] and MOOC dropout [33], learned representations of
student writing [5, 56], and graduation [40, 52]; it has also explored
algorithms for at-risk prediction under fairness constraints [39].
Overall, this area of research is nascent and in need of systematic
frameworks specific to educational contexts to map an agenda for
future research. It does suggest, however, that analyses of novel
learning paradigms (such as cross-institutional transfer) should
include thorough auditing for fairness, a goal of the current study.

2.3 Cross-Institutional Learning
We introduce the term cross-institutional learning to describe the
context where data is partitioned across a set of institutions by
observation (i.e., each institution has a set of records with the same
features, but collectively training on all institutions’ centralized data
is not possible). Prior work related to cross-institutional modeling

has used a variety of different monikers, including “cross-silo” [44],
“horizontal” [75], “collaborative” [67], and transfer learning.

Recent advances in both tooling and theory have, in principle,
enabled improved access to cross-institutional training. In the past
five years, several usable open-source frameworks for distributed,
decentralized machine learning4 as well as frameworks for privacy-
preserving learning5 have emerged. Theoretical advances, such as
various approaches to differentially-private model training (DP-
SGD [1], PATE [62]) have provided provable guarantees regarding
non-identifiability of model training examples, which may reduce
privacy concerns related to cross-institutional collaboration and
further pave the way for cross-institutional training in practice. The
development and refinement of techniques such as federated learn-
ing and secure multi-party computation or homomorphic encryp-
tion has also enabled distributed training with improved privacy
and security [44].

Prior work has also investigated the related theoretical problem
of learning fair models when the test distribution differs from the
training distribution, as may be the case in cross-institutional learn-
ing. For example, Cotter et al. [21] studies the use of constrained
optimization to improve the satisfaction of a fairness constraint on
a held-out dataset with a possibly different distribution from the
training set, Coston et al. [20] evaluates mitigating unfairness on a
target domain due to covariate shift when sensitive attributes are
unknown, and Singh et al. [69] explicitly investigates fairness under
distribution shift. Algorithms which are “fairness-preserving” have
been shown to be sensitive to variations in random train-test splits
[32], suggesting that the fairness properties of models developed
using such algorithms are brittle across distributions.

Applied research on cross-institutional learning has been some-
what limited. In themedical domain, cross-institutional learning has
been used for brain tumor segmentation [67, 68], diabetic retinopa-
thy diagnosis, and mammography screening [16]. For example, in
the context of a tumor segmentation model, direct transfer leads
to average performance degradation at varying levels for 9 of 10
institutions evaluated, while collaborative learning improves per-
formance and performs similarly to data-sharing, depending on
the approach used [67] and can be similar to the performance of
centralized models in simulated settings [59]. Chang et al. [16] eval-
uates several transfer scenarios (local, ensembling via prediction
averaging, single weight transfer, cyclical weight transfer) and finds
that ensembling and weight transfer both outperformed local mod-
els in terms of validation and testing accuracy. Pessach et al. [63]
looks into the task of collaboratively training fair models across
institutions through a preprocessing mechanism which leads to
fairness improvement. However, the impact of the intervention on
individual institutions’ models and institutional subpopulations is
unclear.

In the domain of education, there have been some research ef-
forts that formulate and empirically examine the issue of model
transferability across instructional, institutional, and even societal
contexts [13, 26, 42, 53, 55, 61]. For example, Ocumpaugh et al. [61]
found that models detecting students’ affective states in tutoring

4e.g. TensorFlow Federated https://www.tensorflow.org/federated, IBM Federated
Learning https://ibmfl.mybluemix.net/
5TensorFlow Privacy https://github.com/tensorflow/privacy, Opacus https://opacus.ai/
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systems do not transfer well when trained on one student popu-
lation and tested on another, especially when rural students are
the target (test) population. Similarly, Li et al. [55] investigated
whether academic achievement prediction models trained on U.S.
samples can generalize to other national contexts, and found that
the performance drops significantly for less developed countries.
Most closely related to the current study, Jayaprakash et al. [42]
trained an early alert system of academically at-risk students at a
liberal arts college and applied themodel to four partner institutions
with different institutional profiles. They found that the predictive
performance declined but was still practically useful – the recall of
at-risk students only dropped from 85% at the source institution to
between 61% to 84% (an average of 75%) at the target institutions.
These efforts show the promise of cross-institutional educational
models especially when low-resourced institutions cannot afford to
develop their own model, but still require more research to ensure
that performance does not degrade across institutions, harming
vulnerable students.

3 PRESENT STUDY AND RESEARCH
QUESTIONS

Under the Family Educational Rights and Privacy Act (FERPA),
U.S. higher education institutions are required to maintain records
about students and enrollments for purposes of external reporting
(e.g., to federal educational authorities) and internal improvement.
Local student information systems (SIS) are widely used to manage
these records and can facilitate the identification of students who
are at risk of failing classes, not graduating on time, or dropping out
(see Section 2.1). Due to shared reporting responsibilities, common
operational routines, and similar software tools, institutions tend
to have many overlapping features in their SIS data (e.g., students’
course enrollments and demographic characteristics).

Our study leverages this commonality across four universities
in order to explore the impacts of cross-institutional educational
modeling. As discussed in Section 2.3 above, the limited prior work
on cross-institutional transfer learning has suggested that direct
transfer of learned models across institutions tends to degrade per-
formance, and that only specialized weight-sharing strategies allow
institutions to realize performance gains from transfer learning. In
addition, little research has evaluated the fairness implications for
such transfer scenarios. Building on these previous insights, our
research addresses the following three research questions within
the domain of dropout modeling in higher education:

RQ1. How does cross-institutional transfer (direct, voting, and
stacked) affect performance relative to a local model?

RQ2. How does cross-institutional transfer affect the (intersec-
tional) fairness of the resulting model?

RQ3. Is there a tradeoff betweenmodel performance and fairness
under cross-institutional transfer?

4 METHODS
4.1 Data and Preprocessing
We use (de-identified) data from four public universities in the
United States. All data is for first-time, first-year students in four-
year bachelor’s programs. Our dataset represents a wide range of

enrollment sizes, demographic compositions, and first-year reten-
tion rates as summarized in Table 1.

We study the effects of cross-institutional transfer by convert-
ing the raw student information system (SIS) data obtained from
each institution into a shared schema. Due to restrictions on data
sharing, each institution’s data was preprocessed separately and
then validated by a shared pipeline prior to modeling. Only the
learned model weights, not the data nor any intermediate artifacts
(such as gradients during training), were shared outside of each
institution. A goal of this project is to use SIS data in a form as
close to its raw format as possible (i.e. minimal additional feature
engineering), while also retaining the maximum number of viable
features for experiments. In practice, this required balancing (i)
removing features when insufficient data was available for all insti-
tutions or operationalization of variables was irreconcilable, and
(ii) identifying ways to map related but non-identical features at
each institution into a common semantic space. The process of
defining a shared schema and processing the raw exports of each
institution’s SIS required domain expertise as well as familiarity
with each institutional dataset.

The full schema produced by all institutions for our analysis is
described in Table 2. Each row in the dataset represents a student
enrolled in the fall term. The features describe students’ academic
history, demographics, current course load and course topics, and
future plans (e.g., majors and minors). While the classification of
gender as binary and the specific ethnic and racial groups raises
concerns, we rely on the student categories used by the institutions
themselves, which are shaped by federal reporting requirements.
We provide further details on the schema in Section A.1. We release
our code to validate cross-institutional datasets for conformity to
this schema, and to replicate experiments using these features.6

4.2 Task
Our target prediction is first-year retention: for each student who
enters an institution for the first time in the fall, we predict a
binary indicator for whether that student will enroll at the same
institution the following fall. This target matches the National
Student Clearinghouse’s definition 7, and is widely used both in
research (Section 2.1) and practice in education.

We embrace the data constraints faced by educational institu-
tions, which can limit the applicability of some previously proposed
techniques for transfer learning. Federal regulation to protect stu-
dent data privacy (FERPA) creates challenges for data sharing: costs
associated with determining whether data may be shared, and then
facilitating the sharing may be intractable for many institutions.
We, therefore, do not consider techniques, such as federated learn-
ing, which require collaborative training in any form. For similar
reasons, we do not consider approaches that require data sharing,
for example, for training a centralized model on a joint dataset.
Instead, we evaluate the realistic setting where each institution
can only share model weights and only a single round of cross-
institutional weight sharing is possible. In our experiments, the bar-
riers between institutional datasets are real, as are the challenges

6https://github.com/educational-technology-collective/cross-institutional-transfer-
learning-facct-2023
7https://nscresearchcenter.org/persistence-retention/
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Institution N𝑡𝑟𝑎𝑖𝑛 Female URM Hispanic Asian Black Native
Amer.

Two or
more

White First-year
Retention

A 20k 49% 40% 26.7% 7.1% 5.1% 1.5% 5.1% 53.3% 80%
B 1k 63% 24% 12.6% 2.9% 5.7% 0.9% 4.3% 72.8% 57%
C 20k 57% 36% 33.1% 47.9% 3.2% 0.0% 0.0% 12.9% 94%
D 30k 55% 14% 6% 11.9% 5.3% 0.0% 4% 67.5% 98%

Table 1: Summary statistics for the training dataset for each institution showing demographic characteristics according to
federal reporting requirements (URM: underrepresented racial minority; Two or more: multiple racial/ethnic groups).

of cross-institutional transfer. Contrast this with prior work on
cross-institutional transfer or fairness under domain shift discussed
in Section 2.3, which frequently simulated different “institutions”
or “domains” by synthetically partitioning a single dataset.

4.3 Three Approaches to Cross-Institutional
Transfer

Institutions in almost every domain, and particularly in higher
education, differ in (i) data capacity, and (ii) modeling capacity. As a
result, institutions vary in how theymay be able to develop or utilize
cross-institutional models. We define three distinct approaches
to cross-institutional transfer, intending to cover three common
contexts where institutions may seek to utilize cross-institutional
models. We term these direct transfer, voting transfer, and stacked
transfer. As a baseline for comparison, we consider a local model
trained at the same institution where it is tested.

We consider a dataset D𝑘 B 𝑋𝑘 , 𝑌𝑘 = (𝑥𝑖 , 𝑦𝑖 )𝑛𝑖=1 ∼ P𝑘 of i.i.d.
observations drawn from distribution P𝑘 , where |𝑥𝑖 | = 𝑑 features
are present and𝑘 represents an institution of interest. Denote 𝑓 (𝜃, ·)
as a model with parameters 𝜃 , where 𝑓 (𝜃, 𝑥 𝑗 ) = P(𝑦 𝑗 = 1|𝑥 𝑗 ) is the
model’s predicted probability that 𝑥 𝑗 has label 1, noting that 𝑗 indi-
cates a potentially different institution of interest, and thus 𝑥 𝑗 may
come from a distribution P𝑗 which is different from P𝑘 . Denote
the parameters estimated by training 𝑓 on D𝑘 as 𝜃 (D𝑘 ). Denote
the loss (for some general loss function) of a model trained on dis-
tribution 𝑘 and evaluated on distribution ℓ as L

(
𝑓 (𝜃 (D𝑘 ), �̃�ℓ ), �̃�ℓ

)
,

where D̃𝑘 B �̃�𝑘 , �̃�𝑘 indicates the test split from a distribution 𝑘 .
We use I to refer to the set of all institutions.

We define each of the transfer learning approaches used in our
experiments as follows:

Local: A local model is one trained on the same institution from
which it is evaluated. That is, for institution 𝑘 , the performance of
a local model is defined by L

(
𝑓 (𝜃 (D𝑘 ), �̃�𝑘 ), �̃�𝑘

)
.

Direct Transfer:A direct transfer scenario is one where a model
is to be deployed to an institution different from its testing insti-
tution. That is, for institutions 𝑘 , 𝑗 , the direct transfer model per-
formance is measured by L

(
𝑓 (𝜃 (D𝑘 ), �̃� 𝑗 ), �̃�𝑗

)
. We refer to 𝑘 as

the source institution and 𝑗 as the target institution, following the
domain transfer literature. A single trained source model can be
evaluated via direct transfer on several target institutions.

Voting Transfer: This training paradigm uses a form of averag-
ing to combine the results of models (“voters”) trained on disjoint
distributions. In our experiments, none of the voters are trained

on the target institution, which mimics the case where an insti-
tution without any historical training data uses a set of models
from other institutions in a zero-shot scenario. The model under
the voting transfer paradigm for target institution 𝑖 is defined by
1
𝑐

∑
𝑖′∈I\𝑖 𝑓 (𝜃 (D𝑖′ ), ·), where 𝑐 is the normalizing constant |I | − 1.

Note that this model does not use majority voting, but instead
uses “soft voting,” where the predicted probabilities (not the deci-
sions) of each model are aggregated with equal weight. This allows
for the confidence of each model to be taken into account in the
aggregation.8

Stacked Transfer: This training paradigm uses stacked gen-
eralization [70, 73] to combine the predictions of models trained
on all available institutions with the training data of the source
institution. This is achieved by concatenating, for each input 𝑥𝑖 , the
predictions of each classifier 𝑓 (𝜃 (𝑋 𝑗 ), 𝑥𝑖 ), to the input features, and
learning a classifier from this concatenated data matrix. Formally,
for institution ℓ , if we define

𝑥 = [𝑥1, ..., 𝑥𝑑 ; 𝑓 (𝜃 (D𝑖 , 𝑥); 𝑓 (𝜃 (D𝑗 , 𝑥); 𝑓 (𝜃 (D𝑘 , 𝑥)] (1)
where [·; ·] indicates column-wise concatenation, then the stacked
estimator is 𝑓 (𝜃 (𝑋 )).

Because the final two forms of transfer (voting transfer, stacked
transfer) are both methods for ensembling, we refer to these two
methods collectively as ensemble models.

4.4 Metrics
Metrics for evaluating various aspects of model fairness have been
proposed in prior work (see Section 2). However, many of these
metrics are based on the implicit or explicit assumption that one
outcome is advantageous or favorable, and that a “fair” model can
ensure some form of equity with respect to the model’s predic-
tions in placing members of sensitive subgroups into the favorable
outcome class. This is often tied to contexts in which the model’s
predictions may be explicitly tied to some form of decision (e.g.,
granting a loan). Our task differs from these contexts, because the
model is not explicitly tied to a decision but instead provides a
prediction that might be used to assist a student, but is only useful
when correct—neither predictive outcome is considered inherently
“advantageous.” In our application, the goal of the model is to obtain
equal predictive performance for all subgroups, regardless of the true
or predicted outcome. We call this equitable predictive performance.

8The choice of equal weighting is by convention; in practice, any combination of
weights on the (I − 1)-simplex could be used to aggregate the predictions of the
voters. This weight vector could also be tuned on the target institution in a non-zero-
shot formulation.
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This makes many existing fairness metrics, such as demographic
parity, which assume the presence of an advantageous outcome
to which we would like to equitably assign predictions, not appli-
cable to the dropout prediction task. There are many tasks where
equitable predictive performance is desired, such as machine trans-
lation, where consistent performance is desired across dialects or
languages despite differing availability of training data [2], and
image classification with respect to skin tone or other attributes
[15].

Educational dropout data tends to be highly skewed by label,
because in many institutional contexts, the majority of students do
not drop out. This is the case in our data as well: the retention rate
in our universities varies from 56% (Institution B) to 98% (Institu-
tion D; see Table 1). As a result, metrics such as average accuracy
will tend to be biased toward majority-class predictors and will be
uninformative for the small but critical subset of students who drop
out.

Area Under the Receiver Operating Characteristic Curve
(AUC): Due to our goal of equitable prediction and the significant
label imbalance in our datasets, our experiments use metrics based
on the Area Under the Receiver Operating Characteristic Curve
(AUC), formally defined as:

𝐴𝑈𝐶 (𝑓 (𝜃 )) =
∫ 1

0
TPR(FPR(𝑓𝑡 (𝜃 )))𝑑𝑡 (2)

where 𝑡 indicates a prediction threshold applied to the predictions
of the model (i.e. using the decision rule 𝑓𝑡 (𝜃, 𝑥) = 1

(
𝑓 (𝜃, 𝑥) ≥ 𝑡

)
),

and TPR, FPR are the true positive rate and false positive rates,
respectively. AUC scores are constrained to [0, 1], with a random
predictor achieving an AUC of 0.5. In all metrics and experiments,
we compute the AUC on the test dataset, following the splitting
process described in Section A.2.

AUC is a well-studied metric of predictive performance [14, 35,
41], and has the straightforward interpretation as the probability
that a randomly-selected positive example has a higher predicted
probability of being positive than a randomly-selected negative ex-
ample. This means that the positive and negative classes are equally
weighted in computing AUC, and that AUC is less rewarding to, for
example, majority-class predictors than metrics such as accuracy
or cross-entropy loss. We compute standard errors for AUC values
according to the procedure described in [30, 35]. We provide details
on computing these standard errors in Section D.

AUC Gap: To measure fairness across subgroups, we define a
metric that accounts for the disparities in predictive performance
across a set of arbitrarily many (possibly-overlapping) subgroups
G. We define the AUC Gap as:

max𝑔,𝑔′∈G |ED𝑘
[𝑓 (𝜃 (D𝑘,𝑔)] − ED𝑘

[𝑓 (𝜃 (D𝑘,𝑔′ )] | (3)
whereD𝑘,𝑔 andD𝑘,𝑔′ indicate the subset of the data in group 𝑔 and
𝑔′, respectively. Thus, AUC Gap measures the largest difference
between subpopulation AUCs, and is a measure of the worst-case
performance gap between a set of subpopulations. AUC Gap is
our primary measure of equitable predictive performance, because
it quantifies the largest disparity in predictive performance over
subgroups.

ΔAUC:We define ΔAUC to measure changes in predictive per-
formance or fairness under cross-institutional transfer. We define
the change in AUC between two transfer contexts for a fixed model

𝑓 , as Δ𝐴𝑈𝐶 (𝑇,𝑇 ′) = 𝐴𝑈𝐶 (𝑇 ) −𝐴𝑈𝐶 (𝑇 ′) where, somewhat abus-
ing notation, we use𝐴𝑈𝐶 (𝑇 ) to refer to the AUC of a model trained
using a transfer scheme 𝑇 . This allows us to compare, for exam-
ple, how (overall or subgroup) AUC values are affected by transfer
learning schemes. If ΔAUC is close to zero, we can conclude that
the model performs about the same in two transfer contexts; but
if it is positive or negative, the model performs better/worse in
context 𝑇 ′ relative to 𝑇 . Most often in this study, we are interested
in ΔAUC relative to the local model; that is, ΔAUC(local, ·).

5 EXPERIMENTAL SETUP
Parameterization and Tuning of 𝑓 : We evaluate three forms of
model transfer learning (direct transfer, voting transfer and stacked
transfer, described previously) plus local models on our four insti-
tutional datasets. For each experiment, we explore three parame-
terizations of 𝑓 : (1) 𝐿2-regularized logistic regression (L2LR); (2)
gradient-boosted trees (LightGBM [47]); (3) neural networks (mul-
tilayer perceptrons). Below, we primarily focus on L2LR in the main
text due to space constraints, because (1) we observed the best per-
formance for L2LR models across transfer schemes; (2) L2LR models
are the simplest to train and tune, even for institutions with low
capacity for data science and modeling; and (3) L2LR models are
highly interpretable and widely used for student retention mod-
els in practice (see Section 2.1). We provide the complete results
for other models in the supplementary material, including a par-
allel version of each figure in the main text for the other models
(LightGBM, MLP); our findings with L2LR are consistent with our
findings for these other models, except where explicitly noted.

Hyperparameters of each model are tuned locally via cross-
validation on the source institution, and complete hyperparameter
grids for each model are provided in our associated source code.
For stacked models, the stacked model’s hyperparameters are also
tuned via cross-validation. A subset of the training data is held out
and used only as a validation set for model selection (see below).
The trained models are always evaluated on the test data from each
institution, which is from a future academic term (see Section A.2
for details).

As noted previously, voting transfer is a form of zero-shot transfer
and demonstrates how an institution with no training data might
make use of models from other institutions. Voting transfer experi-
ments do not use the base model from the target institution and do
not require any training on the target institution: they simply use
weighted majority voting to aggregate the results of each trained
source model. Voting transfer allows us to evaluate the zero-shot
transfer of models to an institution with no training data available.

Model Selection Rules: For the stacked transfer experiments,
we explore the use of all three functional forms mentioned above
(i.e. the stacked model can be L2LR, LightGBM, or MLP). However,
it is not clear how the choice of base learners used to construct the
stacked ensemble affects the (accuracy, fairness) of the downstream
stacked model, particularly whenmultiple base models are available
from each institution – a realistic scenario, as it is not uncommon for
an institution to train and evaluate many models during the devel-
opment phase. Furthermore, it is possible that a “greedy” approach
to selecting the base models may have unintended consequences
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for performance (for example, the best-performing model at Insti-
tution A may lead to poor performance when used in an ensemble
at Institution C). We therefore conduct a principled investigation
comparing four strategies for selecting which trained models to
include in the stacking process, as follows. First, in addition to train-
ing the cross-validated models tuned at each institution, we train
10 additional models of each type (L2LR, LightGBM, MLP) with a
fixed set of hyperparameters, varying only the 𝐿2 regularization
of each model over a large grid. Second, from this pool of 11 can-
didate models at each institution (one cross-validated model plus
10 models with various degrees of regularization), we apply one of
four model selection rules to choose which estimators are included
to construct (1). Finally, we fit the stacked model and evaluate it on
the target institution (the base learners are frozen throughout this
process). We explore the following model selection rules:

• Best Performance: only the model with the best validation
AUC at each institution is used.

• Best Fairness: only the model with the best validation AUC
Gap (Equation (3)) is used.

• Same Family: the cross-validated models of the same func-
tional form are used (e.g. LightGBM).

• Kitchen Sink: all 11 models are used.

Due to space constraints, our results in the main text reflect
the best performance selection rule, as this is the approach most
commonly used in practice. We provide additional results for all
model selection rules in Section C.4 (e.g. Figure 6).

6 RESULTS
6.1 Overall Predictive Performance of

Cross-Institutional Transfer Models
In RQ1we are concernedwithmeasuringmodel performance across
three different transfer schemes (direct, voting, and stacked). Fig-
ure 2a shows the AUC for models using each transfer scheme, as
well as the performance of direct transfer of models from a given
source institution to a target institution, for each of the four insti-
tutions in our study. ΔAUC values for each transfer scenario are
shown in Figure 2b.

Direct Transfer Models: Our results in Figure 2 show that
direct transfer has inconsistent performance: for two of four insti-
tutions (B and D), all direct transfer models achieve indistinguish-
able performance from local models (as indicated by ΔAUC = 0
confidence intervals covering zero in Figure 2b for direct transfer
models); for the remaining two institutions (A and D), the results
are mixed. This suggests, perhaps unsurprisingly, that direct trans-
fer of models may sometimes achieve good overall performance
(compared to a local model), but not in all cases.

Ensemble Models (Voting Transfer and Stacked Transfer):
Figure 2 shows results with respect to voting and stacked transfer
models. These results for both voting transfer and stacked transfer
are consistent across all institutions in our study.

In our experiments, zero-shot voting transfer achieves similar
performance to local models (as indicated by ΔAUC = 0 confidence
intervals covering zero in Figure 2b for voting transfer models).
These results suggest that all institutions can obtain models with
equivalent performance to a local model by performing zero-shot

weighted aggregation of a set of models trained only on other
institutions.

Furthermore, stacked transfer provides no additional benefit over
local models (or zero-shot models). Figure 2a shows that stacked
transfer models do not improve over either local models or voting
transfer models (as indicated by overlapping confidence intervals
for AUC between stacked and local/voting models in Figure 2a).
This suggests that once institutions have leveraged either their own
local training data (local model) or other institutions’ models (voting
transfer), combining these information sources (via stacked model)
provides no additional performance gains in our experiments.

A 𝑧-test confirms that ΔAUC(local, voting) and
ΔAUC(local, stacked) are statistically indistinguishable from
zero at 𝛼 = 0.05 (all 𝑝 > 0.1), suggesting that the voting ensemble
method is an effective way to reduce uncertainty over which
direct transfer model should be used when no local training data is
available, but that stacking provides no additional performance
gains. We provide exact 𝑝-values for the hypothesis test that
𝐻0 : ΔAUC ≠ 0 in supplementary Table 3. This suggests, in partic-
ular, that zero-shot transfer of a voting ensemble of three other
institutions can achieve performance statistically indistinguishable
from a locally-trained model.

6.2 Intersectional Fairness Analysis of
Cross-Institutional Transfer Models

Our fairness analysis evaluates whether transferred models achieve
equivalent predictive performance over sensitive subgroups. A sub-
stantial body of work across many disciplines and dating back
several decades delineates how the intersections of individuals’ iden-
tities can contribute to disempowerment and increase vulnerability
to adverse outcomes [22, 28, 72]. In machine learning, however,
most prior work on fairness focused on analyzing one sensitive
attribute at a time (notable exceptions include [31, 60, 74]), despite
the frequent presence of multiple potentially sensitive attributes
in a dataset. Therefore, we measure fairness across intersectional
subgroups via AUC Gap defined in Section 4.4. For sensitive at-
tributes 𝑎 ∈ A1, 𝑎′ ∈ A2, we compute each metric L on the subset
D𝑎,𝑎′ B (𝑥𝑖 , 𝑦𝑖 |𝐴1 (𝑥) = 𝑎,𝐴2 (𝑥) = 𝑎′). Each metric is therefore
computed asL

(
𝑓 (𝜃 (D), �̃�𝑎,𝑎′ ), 𝑦𝑎,𝑎′

)
. By evaluating fairness in this

way, our analysis captures whether changes in AUC are distributed
equally over (observable) intersecting student identities, “focus[ing]
awareness on people and experiences—hence, on social forces and
dynamics—that, in monocular vision, are overlooked” [58].

We specifically use this approach to examine subgroups
of students defined by sex and URM status. These repre-
sent two critical identities in the context of education with
respect to which unfairness is undesirable but common in
educational settings. We compute evaluation metrics for
intersections of A1 = {male, female} for Sex and A2 =

{Underrepresented Minority,Non-Underrepresented Minority}
for URM.9 The main results of our fairness analysis are shown in
Figures 3 and 4; we also provide detailed data in supplementary
9Most institutions recorded more than two categories for Sex, but these tended to be
"other" and "not indicated", and besides making up a small share of students, it was
unclear how these responses were collected in order to interpret them correctly and
consistently. We do not endorse the terminology or definition of URM; we only use it
because it is consistently defined across institutions to abide by federal regulations.
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Figure 2: (a) Left: Predictive performance on test data for various transfer schemes evaluated. (b) Right: ΔAUC values for various
transfer models evaluated with the local model reference line. 95% confidence intervals shown for both figures; text displays
values for point estimates. (See also Figure 8 and Table 3).
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Table 4. Below, we address RQ2 by separately discussing these
disparity metrics under each transfer approach.

Before reporting the results, we raise two issues related to fair-
ness, accountability, and transparency. First, the data we use is what
institutions make available, and does not encapsulate all potential

identities related to the sex or gender construct, and thus there is
measurement bias inherent in the data. Second, AUC (and related
metrics, such as F1 score) cannot be computed unless there is at
least one positively-labeled and negatively-labeled observation in
each subgroup, and our data did not include any other intersectional
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groups where this precondition was not satisfied, and thus fairness
for other measures was not evaluated, a form of algorithmic bias.

Local and Direct Transfer Models: Figure 3a presents the four
intersectional subgroup AUCs underlying the computation of each
AUC gap, which is summarized in Figure 3b. The results in Figure 3
show that local and direct transfer models do not differ in their
performance disparities over subgroups as measured by AUC gap
(Equation (3)). There is no consistent difference between the sub-
group performance disparities of local vs. direct transfer models in
our study, and in no case canwe reject𝐻0 : ΔAUC(local, direct) = 0.
Figure 3a also shows that a single intersectional subgroup often
drives the observed performance disparities, which persist across
different source models: for 17 of 24 transfer schemes evaluated, the
Female Non-URM group is the lowest-AUC group for the model.

Ensemble Models (Voting Transfer and Stacked Transfer):
In general, ensemble models achieve similar fairness relative to
a local model across our experiments. Figure 5b shows that, for
all institutions, both voting transfer and stacked transfer achieve
confidence intervals for ΔAUC that overlap with the local model.
Particularly for the voting transfer model, this is an encouraging
result: It suggests that the practical benefits from the use of zero-
shot voting transfer (achieving performance equivalent to a local
model, without having local training data; see Section 6.1) do not
come at a cost to fairness, an important result. It also suggests that
the improvements of voting transfer over direct transfer models do
not benefit only one group; instead, the gap between the min and
max AUC groups stays the same while the overall AUC improves
under voting transfer (relative to direct transfer).

For 20 of 24 transfer schemes evaluated, we reject𝐻0 : ΔAUC = 0
(see Table 4 for details). This means that for most models, there
is a nonzero gap between the best- and worst-performing groups
for the learned model. This suggests that future work is needed to
improve performance for some intersectional groups if equivalent
performance across groups is possible and desirable.

6.3 Exploratory Findings
This section discusses exploratory findings from our study. Our
large-scale empirical study, being the first of its kind in the domain
of higher education, is uniquely positioned to provide empirical
insight into several questions of interest. However, as a purely
observational study with a limited set of institutions, it is our inten-
tion to clearly position our discussion of the following findings as
exploratory: our study provides initial evidence, but does not prove
there is a relationship, particularly a causal relationship, between
the factors discussed here.

No tradeoff between fairness and accuracy: RQ3 in our study
concerns whether there is a tradeoff between fairness and accuracy
in cross-institutional transfer. Our results suggest that the variation
in AUC Gap is epxlained by other factors (namely, institution and
the transfer type), and that AUC Gap is not associated with AUC
after controlling for these factors. We explore a simple linear re-
gression of AUC Gap on AUC, with terms for the target institution
and the transfer type. We find that in the resulting linear model,
the AUC term 𝛽AUC has 𝑡 = −0.350 (𝑝 = 0.72719), suggesting that
we do not have evidence to suggest that AUC and AUC Gap are
associated, after controlling for the target institution and transfer

type. We show a scatter plot of the data used to conduct this analy-
sis in supplementary Figure 11, and provide details on the model,
in Section C.

Impact of Intersectional Analysis: In Section C.3, we briefly
compare the findings of our intersectional analysis with a non-
intersectional (“marginal”) analysis. This comparison demonstrates
that marginal analyses are more likely to ignore performance dis-
parities within subgroups, and to assign lower overall AUC Gap
scores to models.

No clear impact of regularization: We also study whether
effective regularization helps reduce subgroup performance dispar-
ities. One potential interpretation of the disparities measured by
AUC Gap might be that models simply overfit to certain groups;
in this case, effectively tuning the regularization parameter might
reduce the degree of overfitting to certain groups. To investigate
the impact of regularization, we conduct a sweep of the 𝐿2 regu-
larization for all models (L2LR, LightGBM, MLP; all contain an 𝐿2
regularization term) and keep all other hyperparameters at default
values. We provide the results of this study in Figure 10, and give
further detail on the design of these experiments in Section C.6.
Our results suggest that there is not a clear relationship between
regularization and AUC Gap. This aligns with existing work on
subgroup robustness, which suggests that subgroup performance
tends to improve along with the overall model (in which case regu-
larization should be tuned to optimize the bias-variance tradeoff)
[? ].

7 CONCLUSION
This paper presents the first large-scale empirical study of model
performance and fairness in cross-institutional transfer learning.
We proposed a set of metrics for quantifying cross-institutional
transfer performance and fairness, and applied those techniques in
the context of university student dropout predictionwith real-world
education data. Our results show that cross-institutional transfer
is possible, where even zero-shot “voting transfer” models achieve
statistically indistinguishable performance to a local model with no
change in intersectional subgroup fairness. Additionally, our results
show more broadly that there is no evidence of a performance-
fairness tradeoff across a wide scope of functional forms (L2LR,
LightGBM, MLP), transfer schemes (direct, voting, stacked), and
selection rules for the ensemble components (best performance,
best fairness, same family, kitchen sink).

These findings have important implications for both researchers
and practitioners. For machine learning researchers, the demon-
strated success of relatively simple approaches (e.g. voting transfer)
suggests that further investigation is needed to understand the con-
ditions under which (𝑖) zero-shot transfer is effective, and (𝑖𝑖) more
sophisticated transfer learning and ensembling methods succeed or
fail. For educational researchers, the results suggest that while in-
stitutional contexts matter in understanding and predicting student
dropout, there exists a decent level of generalizable knowledge that
can facilitate the development of portable predictive models. For
practitioners, our results show that the cross-institutional learning
paradigm can serve as a viable means for well-resourced institutions
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to support their underresourced counterparts. This is especially rel-
evant in an era with growing availability of big data and increasing
prevalence of algorithmic decision making.

On the other hand, this study has a handful of limitations. First,
our models are trained on available data from each institution,
which could contain their own biases [9, 49]. Treating institutional
datasets as a source of truth masks complexities in how variables
are coded and in how historical inequities are manifested in the
data, which could affect the applicability of our conclusions. Second,
our sample only includes four institutions in the United States that
have the data infrastructure and capacity to make large-scale data
available for research. This limits the generalizability of our results
to other institutions with varying degrees of similarity in student
populations and dropout-generating processes. The breadth of cul-
tural perspectives in non-U.S. contexts, as well as the definition
of which students are under-represented, also suggest a need for
replication and extension of this work.

Informed by the limitations, there are a few lines of future work.
First, further studies on cross-institutional transfer are needed,
including similar studies in education and other decentralized orga-
nizations with large-scale shared electronic record-keeping systems
(e.g., hospitals, local governments, financial institutions). Future
work should evaluate additional transfer approaches and could
include the development of algorithms designed explicitly to mit-
igate performance disparities. Second, cross-institutional collab-
orative modeling is still difficult, due to a combination of data-
sharing restrictions and a lack of technical infrastructure for cross-
institutional collaboration with private data. We encourage the
development of better technical and theoretical frameworks for
collaborative learning in the presence of strict data-sharing con-
straints. Finally, our work suggests that overall performance can be
improved without a strict cost to fairness, providing a motivation
for further improvement of general classification techniques for stu-
dent retention modeling, even without explicit disparity-mitigating
interventions.
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A DATA
A.1 Schema
The complete schema for the institutional data used in this study is
shown in Table 2. As discussed in Section 4.1, the data is extracted
from each institution’s student information system (SIS), and is a
subset of the data available at each institution. These variables were
chosen based on a combination of availability, expected predictive
utility (based on prior research discussed in Section 2.1 and the
researchers’ own experience), and consistency of coding across
institutions.

The “CIP2 code” referenced in Table 2 refers to the Classifica-
tion of Instructional Programs (CIP) codes defined by the Cen-
ter for Educational Statistics10. CIP codes are written as deci-
mal values (i.e. 14.43 is the CIP code for “Biochemical Engineer-
ing”). We use the “coarse” CIP codes, which are represented by
the integer value preceding the decimal (i.e. 14 represents “Engi-
neering”). A complete list of CIP codes may be viewed at https:
//nces.ed.gov/ipeds/cipcode/browse.

For featuresmarked as “multicolumn” in Table 2, several identical
features are generated to represent the information for that row.
For example, for “Units Per Course Type”, we generate 62 features,
where each feature indicates the number of units associated with
a given CIP code (1-61, or “Missing” when the CIP code is not
available).

The “Retention” variable indicates the prediction target for this
study, and is an indicator for whether the student was enrolled in
the following fall term, according to the university’s enrollment
records. Note that this is only a 1-year measure of retention; it does
not measure whether the student persists to complete a degree.

Additional categorical variables are coded as follows:

• Course Component: a variable indicating which “compo-
nent” of a course an individual record is assigned to (note
that courses may sometimes also consist of multiple com-
ponents, such as a lecture and a lab component). These also
include multiple-component courses, which are simply the
set of all combinations of the following course components:
Lecture, Discussion, Lab, Seminar, Other.

• Sex: a self-declared variable representing the students’ de-
clared sex or gender identity. The procedure for collecting
this data, along with the exact allowed values, vary by institu-
tion; we include the following possible values, but recognize
the limitations of such a coding: Male, Female", Not Indicated,
Other.

• Ethnicity: a self-declared variable representing the students
declared ethnicity. The procedure for collecting this data,
along with the exact values, vary by institution. As above,
we include the following possible values, which reflect the
union of categories across our institutions, but recognize the

10https://nces.ed.gov/ipeds/cipcode/

limitations of this coding: Asian, Black, Hawaiian, Hispanic,
Native American, Not Indicated, White, 2 or More.

• URM Status: The term ‘Underrepresented Minority’ holds
a specific institutional meaning in higher education, where
it is used to refer to a category of domestic students (those
with U.S. citizenship status) who hold membership in an
underrepresented racial or ethnic group in the United States.
We note that this is a category that is tracked and reported
by almost every accredited institution in the United States.
As a result, we decided to include this variable, instead of
deriving a potentially more socially meaningful, but less con-
textual, “underrepresented minority” feature. This variable
takes the following values: Non-Underrepresented Minority,
Underrepresented Minority, International.

For variables marked as “nullable” in Table 2, handle them in two
distinct ways: for some variables (high school GPA, ACT English,
ACT Math), we drop records with those values not present (since
missingness is rare for these features). For the remaining nullable
features (SAT Math, SAT Verbal) we use median imputation.

We note that for all institutions, we only use records up to the
Fall 2019 term in order to avoid forecasting into the academic terms
affected by the COVID-19 crisis.

A.2 Train/Test/Validation Split
Our goal is to realistically evaluate models’ ability to predict on
future data. To do so, we use as training data records from all terms
prior to Fall 2019 term. We reserve all records from the Fall 2019
term as validation/testing data, where these records are split evenly
into test/validation.

B OPEN-SOURCE CODE RELEASE
Concurrent to the release of this paper, we will make our code
publicly available via public GitHub repository. This includes code
for data validation, model training, and evaluation, as well as other
reproducibility details (software requirements, code for generating
figures).

C ADDITIONAL RESULTS
C.1 Transfer Gap Detailed Results
We provide detailed experimental results for the transfer gap mea-
sure ΔAUC in Table 3, and detailed experimental results for the
AUC Gap fairness measure in Table 4.

C.2 Subgroup-Specific Transfer Detail
This section gives additional results regarding intersectional model
performance discussed in Section 6.2. Figure 4 provides the results
of each model transfer scenario (local, direct, voting, stacked), or-
ganized by intersectional subgroups.

Figure 4 provides additional evidence regarding the zero-shot
transfer capacity of models learned via direct transfer and voting
transfer: their subgroup performance tends to be similar to the local
model, with no discernable effect on performance disparities, mea-
sured by AUC gap. Most transfer schemes also have limited effect
on subgroup performance relative to the local model, measured by
ΔAUC(local, ·), as shown in Figure 4b. The exception to this is the
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Feature Name Description Type Nullable Min Max Student Multiple Columns

Units Credit units the student enrolled in
in this term

Float 0 100

Units Failed Percentage of enrolled units the stu-
dent failed

Float 0 100

Units Incomplete Percentage of enrolled units the stu-
dent earned an incomplete for

Float 0 100

Units Withdrawn Percentage of enrolled units the stu-
dent withdrew from

Float 0 100

Cumulative GPA Cumulative GPA from all known
tertiary education sources

Float 0 4

Units Transferred Total number of transferred units in
this term

Integer ✓ 0 100 ✓

Age Age at course start Integer ✓ 0 150 ✓
High School GPA GPA in high school Float ✓ 0 4 ✓
ACT English ACT English component score Integer ✓ 0 36 ✓
ACT Math ACT Math component score Integer ✓ 0 36 ✓
SAT Math SAT Math component score Integer ✓ 0 800 ✓
SAT Verbal SAT Verbal component score Integer ✓ 0 800 ✓
GPA Mean The term-level gpa average

weighted by units
Float 0 4

GPA Stddev The term weighted gpa stddev Float 0 inf
GPA 𝑧-score The weighted average z-score of the

student in their courses
Float -inf inf

GPA 𝑧-score stddev The weighted stddev z-score of the
student in their courses

Float 0 inf

Units Per CIP2 Units taken by 2-digit CIP code Float 0 100 ✓
Units Per Course Units taken by course format Integer 0 100 ✓
Units Online Units taken online. Integer 0 100
Units In-Person Units taken in person. Integer 0 100
Modality Whether the student is enrolled in-

person or online
Categorical ✓

Sex Self-declared sex Categorical ✓
Ethnicity Self-declared ethnicity Categorical ✓
URM Status Institutionally-assigned indicator

for underrepresented minority sta-
tus

Categorical ✓

Major 1 CIP Code 2-digit CIP code for first major Categorical 1 61 ✓
Major 2 CIP Code 2-digit CIP code for second major Categorical 1 61 ✓
Minor 1 CIP Code 2-digit CIP code for first minor Categorical 1 61 ✓
Minor 2 CIP Code 2-digit CIP code for second minor Categorical 1 61 ✓
Year The current year Integer 2013 2019 ✓
Retention Indicator for whether student was

enrolled in following fall term
Binary 0 1 ✓

Table 2: Data schema used for this study. Each row in the resulting dataset represents a single first-year student present in
the Fall academic term at an institution. “Student-level” features indicate those which are fixed for a given student under
normal circumstances, and do not vary by term. For more detail on categorical codings and handling of nullable features,
see Section A.1 Note that min/max values indicate the min/max enforced by our data validation pipeline; these are not the
min/max values occurring in the data (which often fall into a much smaller range).

stacked transfer model, which tends to have both improved perfor-
mance relative to the local model (high ΔAUC(local, stacked)) and
reduced disparities between groups (low AUC gap; see Figure 3).

C.3 Non-Intersectional Comparison for Figure 3
In Section 6.2, we discuss the significance of analyzing model per-
formance disparities via intersectional groups. Here, we present

evidence of the difference between the intersectional and non-
intersectional (which we refer to as “marginal”) analysis.

Figure 5 shows an identical analysis as Figure 3, with the ex-
ception that subgroup performance is computed over marginal
(non-intersectional) subgroups. Here, we can see that, for each sub-
group, the performance of the model is a weighted average of the
previous intersectional groups, reducing the observed performance
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Target
Institution

Source
Institution(s)

ΔAUC SE(ΔAUC) Transfer Type 𝑝

A D-C-B −0.022 0.016 Majority Voting 0.178
A D-C-A-B 0.010 0.016 Stacked 0.505
A D −0.057 0.017 Direct 0.001*
A C −0.015 0.016 Direct 0.352
A B −0.019 0.016 Direct 0.243
B D-C-A 0.025 0.062 Majority Voting 0.692
B D-C-A-B 0.026 0.062 Stacked 0.674
B D −0.041 0.065 Direct 0.528
B C 0.004 0.063 Direct 0.948
B A −0.022 0.064 Direct 0.735
C D-A-B −0.050 0.030 Majority Voting 0.096
C D-C-A-B 0.006 0.028 Stacked 0.839
C D −0.043 0.030 Direct 0.149
C A −0.094 0.031 Direct 0.002*
C B −0.079 0.031 Direct 0.010*
D C-A-B 0.003 0.066 Majority Voting 0.960
D D-C-A-B 0.000 0.066 Stacked 0.998
D C 0.013 0.065 Direct 0.841
D A −0.039 0.069 Direct 0.573
D B 0.019 0.065 Direct 0.770

Table 3: Detailed results for transfer gap ΔAUC for each transfer scheme evaluated. The final column gives the 𝑝-value of the
hypothesis test of ΔAUC ≠ 0 for the transfer scheme evaluated. ∗ indicates we reject 𝐻0 at 𝛼 = 0.05.

Target Institution: C Target Institution: D

A B C D Voting Stacked A B C D Voting Stacked

Target Institution: A Target Institution: B

A B C D Voting Stacked A B C D Voting Stacked
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Figure 4: (a) Left: Model performance over intersectional subgroups for various transfer schemes evaluated (Male, Female, URM,
Non-URM) for all institutions. (b) Right: ΔAUC values over sensitive subgroups for various transfer schemes evaluated. One-SE
error bars shown for both figures. Direct and local transfer models are in lexicographic order (A, B, C, D) within each subgroup.

disparities and masking larger disparities within the intersectional
groups.

C.4 Impact of Ensemble Selection Strategies
We provide results comparing the impact of different model selec-
tion strategies in Figure 6.
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Target
Institution

Source
Institution(s)

AUC Gap SE(AUC Gap) Transfer Type p

A D-C-B 0.122 0.034 Majority Voting 0.00*
A D-C-A-B 0.157 0.032 Stacked 9.46 × 10−7*
A B 0.109 0.034 Direct 0.00*
A C 0.143 0.034 Direct 2.92 × 10−5*
A D 0.139 0.036 Direct 0.00*
A A 0.140 0.032 Direct 1.41 × 10−5*
B D-C-A 0.255 0.102 Majority Voting 0.01*
B D-C-A-B 0.308 0.091 Stacked 0.00*
B A 0.356 0.191 Direct 0.06*
B C 0.241 0.105 Direct 0.02
B D 0.286 0.117 Direct 0.01*
B B 0.311 0.096 Direct 0.00
C D-A-B 0.083 0.068 Majority Voting 0.22
C D-C-A-B 0.121 0.057 Stacked 0.03
C A 0.187 0.067 Direct 0.01*
C B 0.105 0.075 Direct 0.16
C D 0.093 0.071 Direct 0.19
C C 0.121 0.058 Direct 0.04*
D C-A-B 0.364 0.115 Majority Voting 0.00
D D-C-A-B 0.327 0.117 Stacked 0.01
D A 0.492 0.123 Direct 6.72 × 10−5*
D B 0.328 0.109 Direct 0.00*
D C 0.344 0.110 Direct 0.00*
D D 0.321 0.112 Direct 0.00*

Table 4: Detailed results for fairness measure AUC Gap for each transfer scheme evaluated. The final column gives the 𝑝-value
of the hypothesis test of AUC Gap ≠ 0 for the transfer scheme evaluated. ∗ indicates we reject 𝐻0 at 𝛼 = 0.05.
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Figure 5: Non-intersectional (“marginal”) version of Figure 3, where AUC is computed over marginal groups, not intersectional
groups. In comparison to Figure 3, this analysis shows considerably smaller disparities. This demonstrates how marginal
analyses can mask intersectional performance disparities.
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Figure 6: Test AUC by ensemble type and selection rule.

C.5 Impact of Functional Form for Base and
Stacked Ensemble Models

In this section, we provide additional results for LightGBM, MLP
models not discussed in the main text due to space limitations.

We provide identical experimental results as our figures in the
main text here, using LightGBM and MLP models in place of L2LR.
Figure 7 shows results analogous to main text Figure 1; Figure 8
shows results analogous to main text Figure 2; and Figure 9 provides
results analogous to Figure 3. The results shown for LightGBM and
MLP models are consistent with those discussed in the main text.

C.6 Regularization Study
Prior work suggested that regularization affects model fairness by
controlling worst-group outcomes, including in modeling regimes
relevant to our fairly simple 𝐿2-regularized logistic regression ap-
proach. For example, [45] shows that a regularizer consisting of an
𝐿2 penalty, combined with a “prejudice removal” regularizer, can
reduce a measure of unfairness. However, their specific formulation
of unfairness seeks to minimize the model’s reliance on sensitive
attributes to avoid disparate treatment, while in our experiments,
we do not seek to explicitly avoid this. Using distributionally-robust
neural network training, [65] showed that increasing regulariza-
tion (via increasing an 𝐿2 penalty or via early stopping) improves
worst-group accuracy. [48] suggested that the removal of spurious
(i.e. non-informative) features can have disproportionate effects on
subgroups. We are aware of no previous work which explores the
effect of regularization on cross-institutional transfer, despite the
clear connection between regularization, the bias-variance tradeoff,

and generalization error, which could have implications for domain
transfer.

In this section, we conduct an exploratory study of the impact
of regularization on overall performance, and on equitable perfor-
mance over intersectional subgroups. Our procedure is as follows:
for each training experiment above, we fix the 𝐿2 regularization
penalty parameter 𝜆 ∈ 0, 10−4, 10−3, . . . , 104 and follow the same
training and evaluation procedure. We only conduct this for local
and direct transfer scenarios. Our aim in this study is to deter-
mine how regularization might affect transfer, and how specific
subgroups are affected.

Results of this study are shown in Figure 10. First, the dotted
lines in Figure 10a indicate AUC at different levels of regularization,
which shows the standard expected result that (due to bias-variance
tradeoff) regularization tends to have an “optimal” value (indicated
by a ‘*’ dot), above or below which a model’s test performance
tends to decline.

Figure 10b shows that each intersectional subgroup tends to
respond similarly to regularization, and that changes in regular-
ization generally fail to reduce performance disparities across all
source-target institution pairs, with the rank-ordering of model
performance for subgroups largely consistent across source institu-
tions.

We discuss the results in further detail in Section 6.

C.7 Model Similarity Analysis
While our experiments demonstrate that models trained locally at
each institution have similar average performance to each other,
our experiments do not verify that these models learn similar func-
tions of the inputs; instead, they merely verify that their average
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(b) Overall results for MLP model.

Figure 7: Overall results for LightGBM (7a) andMLP (7b) models. The findings are consistent with our findings for 𝐿2-regularized
logistic regression shown in Figure 1.

performance on each institution’s test set is similar. In this sec-
tion, we briefly explore whether the learned coefficients are similar
between local models learned at each institution.

A standard method to compare whether logistic regression co-
efficients differ between two datasets requires multi-institutional
training (having access to all datasets), and would involve adding
an institution indicator variable, and determining whether the
coefficient corresponding to this variable was nonzero in the fitted
model. However, since we are unable to train directly on multi-
institutional datasets due to the privacy constraints mentioned
above, we explore alternative methods for model comparison. These
methods should be considered qualitative explorations of the simi-
larity of the learned models.

We provide two exploratory analyses to address this question.
First, in Figure 12, we compute an overlap metric, Overlap@𝑘 , for
the local models from each pair of institutions. Overlap@𝑘 is com-
puted as follows: let 𝜃 = [𝜃1, . . . , 𝜃𝑑 ] represent the 𝑑-dimensional
coefficients of a model. For each pair of 𝜃𝑖 , 𝜃 𝑗 , we separately sort
the elements in descending order by magnitude 𝑠𝑜𝑟𝑡 (𝜃 ). Then, for
fixed 𝑘 , we take the first 𝑘 elements of both vectors and compute
the size of the overlap:

Overlap@𝑘 (𝜃𝑖 , 𝜃 𝑗 ) =
��𝑠𝑜𝑟𝑡 (𝜃𝑖 ) [1 : 𝑘] ∩ 𝑠𝑜𝑟𝑡 (𝜃 𝑗 ) [1 :]

�� (4)
Intuitively, Overlap@𝑘 measures the level of agreement between

models about which coefficients are largest in magnitude. This
does not, for example, ensure that these coefficients have even the
same direction, but it provides a qualitative measure of agreement
on feature importance. Two models which have identical rank-
ordering of feature magnitudes would have Overlap@𝑘 of 𝑘 , the
highest possible value; two models which do not agree on any of
the highest-𝑘-magnitude features would have Overlap@𝑘 of zero.

Because it can be easier to interpret the overlap as the relative
size of the intersection, we also report the Normalized Overlap@𝑘 ,
obtained by normalizing by a factor of 1/𝑘 :

Normalized Overlap@𝑘 (𝜃𝑖 , 𝜃 𝑗 ) =
1
𝑘

��𝑠𝑜𝑟𝑡 (𝜃𝑖 ) [1 : 𝑘] ∩𝑠𝑜𝑟𝑡 (𝜃 𝑗 ) [1 :]
��

(5)

Results of our computation of these similarity metrics are shown
in Figure 12.

As an additional check of model similarity, which (unlike
Overlap@𝑘) accounts for the directionality of the feature vectors,
we also report the cosine similarity between each pair of model
coefficients. Cosine similarity is a measure of the angle between
two vectors, irrespective of their magnitudes, and is defined as:

𝑐𝑜𝑠𝑠𝑖𝑚(𝜃𝑖 , 𝜃 𝑗 ) =
⟨𝜃𝑖 , 𝜃 𝑗 ⟩
| |𝜃𝑖 | |𝜃 𝑗 | |

(6)

Institution B C D

A 0.46 0.40 0.27
B 0.34 0.22
C 0.17

Table 5: Model similarity measure 𝑐𝑜𝑠 (𝜃 (𝑋𝑖 ), 𝜃 (𝑋𝑖′ ).

Results of this comparison are shown in Table C.7

D COMPUTING STANDARD ERRORS OF AUC
As discussed above, we compute standard errors for AUC estimates
according to the procedure described in [30, 35], which utilizes
the equivalence between the Area Under the Receiver Operating
Characteristic Curve and the Wilcoxon Statistic.

Formally, let 𝑛𝑝 =
∑𝑛
𝑖=1 1(𝑦𝑖 = 1) and 𝑛𝑛 =

∑𝑛
𝑖=1 1(𝑦𝑖 = 0) be

defined as the number of positive and negative examples in the
dataset of interest, respectively. Define𝐴′ as the AUC on the dataset.
Then, let

𝐷𝑝 B (𝑛𝑝 − 1) ( 𝐴′

2 −𝐴′ −𝐴′2) (7)

𝐷𝑛 B (𝑛𝑛 − 1) ( 2𝐴′2

1 +𝐴′ −𝐴′2) (8)

Then the standard error of 𝐴′ can be computed as:
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(b) Results for MLP model.

Figure 8: Additional results for LightGBM (8a) and MLP (8b) models. The findings are consistent with our findings for 𝐿2-
regularized logistic regression shown in Figure 2: the 95% CI for AUC for voting transfer overlaps with the local model, for all
institutions and for both LightGBM and MLP. Additionally, the 95% CI for ΔAUC overlaps with zero, indicating no transfer gap
between the voting transfer model and the local model.

𝑆𝐸 (𝐴′) =

√︄
𝐴′ (1 −𝐴′) + 𝐷𝑝 + 𝐷𝑛

𝑛𝑝𝑛𝑛
(9)

For further details and proof, we defer the reader to [35].
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(a) Results for LightGBM model.
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(b) Results for MLP model.

Figure 9: Additional results for LightGBM (9a) and MLP (9b) models. The findings are consistent with our findings for 𝐿2-
regularized logistic regression shown in Figure 3: the 95% CI for AUC Gap for voting transfer overlaps with the local model,
for all institutions and for both LightGBM and MLP, indicating no difference in the intersectional subgroup performance
disparities between the voting transfer model and the local model.
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(a) Regularization study results for L2LR model.
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(b) Regularization study results for LightGBM model.
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(c) Regularization study results for MLP model.

Figure 10: Results of regularization study over various 𝐿2 regularization strengths for local and direct transfer models. Left:
Test AUC (lines) and AUC Gap (bars). ‘*’ marker indicates the value 𝜆∗ which achieves highest test AUC for the given model
type and source/target institution. Right: Intersectional subgroup model performance.
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Figure 11: Overall performance (measured by AUC) vs. fairness (AUC Gap, Eq. (3)).
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(a) Model similarity metric Overlap@𝑘 for each pair of local
models.
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(b) Model similarity metric Normalized Overlap@𝑘 for each pair
of local models.

Figure 12: The proposed model similarity measures for each pair of locally-learned models.
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