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ABSTRACT
Colleges have increasingly turned to data-science applications to 
improve student outcomes. One prominent application is to predict 
students’ risk of failing a course. In this article, we investigate whether 
incorporating data from learning management systems (LMS)—which 
captures detailed information on students’ engagement in course 
activities—increases the accuracy of predicting student success 
beyond using just administrative data alone. We use data from the 
Virginia Community College System to build random forest models 
based on student type (new versus returning) and data source 
(administrative only, LMS only, or full data). We find that among 
returning college students, models that use administrative-only out-
perform models that use LMS-only. Combining the two types of data 
results in minimal increased accuracy. Among new students, LMS-only 
models outperform administrative-only models, and accuracy is sig-
nificantly higher when both types of predictors are used. This pattern 
of results reflects the fact that community college administrative data 
contain little information about new students. Within the LMS data, 
we find that LMS data pertaining to students’ engagement during the 
first part of the course has the most predictive value.

Introduction

Colleges have increasingly turned to data-science applications and “big data” to better 
understand their students’ needs, improve instructional delivery, and better target scarce 
resources (Fischer et  al., 2020). These applications are both widespread and varied, 
ranging from adaptive learning algorithms that tailor instruction to students (e.g., 
Murphy et  al., 2020); to natural language processing tools that automate writing guid-
ance and assessment (e.g., Gayed et  al., 2022; McNamara et  al., 2013); to chatbots that 
respond to textual or verbal input and guide students through the college application 
process (Page & Gehlbach, 2017).
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One of the most prominent applications of data science in higher education has 
been to predict students’ risk of failing a course or dropping out. A third of all higher 
education institutions have invested in predictive analytics and collectively spend hun-
dreds of millions of dollars to generate these predictions (Barshay & Aslanian, 2019). 
Most institutions use the “early alerts” generated by predictive models to initiate out-
reach from academic advisors or to encourage faculty to reach out to students in their 
classes who are struggling to succeed (Ekowo & Palmer, 2016; Klempin et  al., 2018).

There is growing interest among higher education administrators and researchers 
in what combination of data sources can be leveraged to create meaningful predictors 
and, in turn, the most accurate predictions. The most common data source is insti-
tutions’ administrative data, which include information on students’ academic history 
(e.g., academic preparation, academic momentum, enrollment intensity) that education 
researchers have found to be strongly correlated with student success (Kuh et  al., 
2007; Pascarella & Terenzini, 1991, 2005; Tinto, 1994, 2012). More recently, the steady 
rise in digital learning systems (most prominently during the COVID-19 pandemic 
but also in the years preceding) has generated unprecedentedly rich data about stu-
dents’ moment-to-moment academic engagement. A prominent example is learning 
management software (LMS), which allows instructors to manage instructional content, 
organize learning activities, administer assessments, and monitor progress. Prior studies 
using various data-mining techniques demonstrate how fine-grained “behavioral traces” 
in LMS data can provide an understanding of students’ learning processes and predict 
students’ academic performance (e.g., Li et  al., 2020; Lim, 2016; Park et  al., 2018). 
However, the richness of the LMS behavioral trace data (referred to as “LMS data” 
in the remainder of this article) requires substantial analytic time and computing 
capacity. For instance, the raw LMS data we use in this study is roughly one to two 
terabytes for each term; working with data of this size requires significant storage 
space and processing power. In addition, the raw LMS data include records for each 
single action a student performs when interacting with the system; therefore, gener-
ating predictors that meaningfully describe students’ experiences and actions often 
requires complex data transformations (Baker et  al., 2020).

In this article, we systematically evaluate whether incorporating LMS data into 
course-performance prediction models substantially improves prediction accuracy 
beyond administrative data alone (henceforth “admin-only data”). Our primary goal 
is to inform the decisions of other researchers, policymakers, and administrators who 
are considering investing in the use of LMS data in predictive analytics. Our analysis 
builds on prior studies that have conducted exploratory analyses, at the level of a 
small number of courses, of the comparative predictive utility of LMS data to other 
data sources. For instance, in a study using data from 10 introductory STEM courses 
at a public research university, Yu et  al. (2020) found that predictive models trained 
on small sets of predictors derived from admin-only data or LMS-only data both 
have reasonably strong accuracy, and that models trained on admin and LMS data 
together have the highest levels of accuracy. Aguiar et  al. (2014) demonstrate that, 
among first-semester engineering students at Notre Dame, students’ ePortfolio entries 
enhance predictive accuracy for whether students will persist into the next course in 
the engineering sequence. Crossley et  al. (2016) use data from several hundred par-
ticipants in a MOOC course to demonstrate that students’ clicks in the MOOC 
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interface and discussion content accurately predict whether students will complete 
the course.

While the predictive models investigated in these prior articles included several courses 
and hundreds to a couple thousand students, our article includes 2,646 courses across 
23 institutions and 226,784 students across an entire state community college system, 
thus greatly increasing the generalizability of our results (though we discuss remaining 
considerations about generalizability in detail below). We also build on prior studies by 
conducting our analysis within the community college sector, which accounts for approx-
imately 40% of all postsecondary enrollments, in which course failure and dropout rates 
are much higher, and where colleges have relatively limited information about their 
students before they begin their coursework. Insights on whether LMS data improves 
course performance predictions at the community college level could thus inform out-
reach and support efforts that have the potential to benefit a much larger and more 
at-risk population of students at broad-access institutions. Relative to prior articles, we 
also make the novel contribution of investigating whether the additional predictive value 
of LMS data varies for new versus returning college students. This distinction is import-
ant because, while colleges tend to have more information about returning students, new 
students are on average more likely to not succeed in their coursework, so colleges may 
have more interest in predicting success for new students.

We conduct our investigation using data from the Virginia Community College 
System (VCCS), which consists of 23 community colleges in the Commonwealth of 
Virginia. VCCS currently uses Canvas as their LMS. Across course modalities (i.e., 
in-person, online, or hybrid), instructors can use Canvas to organize and manage a 
variety of teaching and learning activities, such as submitting and grading assignments, 
sharing course materials, creating discussion forums, proctoring quizzes and exams, 
and, in the case of synchronous online courses, hosting virtual meetings.

Because the VCCS recently navigated to Canvas from a different LMS, we use data 
from after all colleges switched to the new system in Summer 2019 and extend the 
analytic sample through Spring 2021 (omitting Spring 2020, for reasons we detail 
below). We classify data we use to generate predictors into two broad categories: 
admin-only data and LMS-only data. Admin data includes measures such as student’s 
cumulative GPA, prior credit accumulation, and current enrollment intensity, as well 
as course-level information like average historic grades and modality. LMS data include 
measures such as total time spent logged into the LMS and the number of on-time 
assignment submissions. There are some LMS predictors we include, such as the 
number of discussion forum posts, that are only applicable to the subset of course 
sections in which the instructor enabled that Canvas feature.1 We use random forest 
prediction models to predict student performance, using a binary measure of success 
based on the student’s final grade (A/B/C versus D/F/W). In order to assess the degree 
to which incorporating LMS data into course performance prediction models improves 
their accuracy, and how this differs based on student type, we build six separate 

1 As we describe below, in these cases we set the value of the LMS predictor to zero and include a separate missing-value 
indicator in the model.
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models: (1) admin-only data, returning students; (2) LMS-only data, returning students; 
(3) both admin and LMS data (“full data”), returning students; (4) admin-only data, 
new students; (5) LMS-only data, new students; and (6) full data, new students. Finally, 
we explore the generalizability of our results to other contexts by showing how the 
predictive utility of the LMS data vary based on how Canvas is used by students and 
instructors.

Our article yields several primary conclusions and corresponding contributions to 
informing research and administrative practices. First, among returning VCCS stu-
dents, the models trained on admin-only data substantially outperform models trained 
on LMS-only data and are reasonably accurate at predicting students’ course perfor-
mance: The admin-only model has a C-statistic (a general metric of prediction 
accuracy, which is also referred to as the AUC) of 0.855, while the LMS-only model 
has a C-statistic of 0.779.2 Including both LMS and admin data results in only a 
slight, marginal improvement in prediction accuracy above the admin-only model 
(2% increase in C-statistic). This suggests that, for students with enrollment history 
in college, detailed measures of students’ engagement derived from LMS data do not 
meaningfully improve our ability to predict their success in the course beyond the 
predictions we could generate just relying on measures of their prior academic per-
formance. By contrast, among new VCCS students, the LMS-only model outperforms 
the admin-only model (C-statistics of 0.775 and 0.728, respectively), and combining 
the admin and LMS data results in a more significant increase in prediction accuracy 
(C-statistic of 0.825).3

Second, within the LMS data, we find that the predictors describing students’ 
engagement during the first part of the target course have the most predictive value; 
predictors describing students’ engagement in prior or concurrently taken courses 
are significantly less predictive of performance in the target course. This finding 
suggests that prediction-model developers could use a small fraction of the vast LMS 
data and achieve a similar level of accuracy. Third, the relative value of the LMS 
data in increasing prediction accuracy is highly variable across courses, with LMS 
data having the lowest value for predicting performance in math courses, in which 
students have the least amount of interaction with the LMS. Overall, our results 
show that the value of LMS data in predicting students’ course performance is highest 
for new students and in courses where students and faculty engage more with 
the LMS.

2 As we describe in the Methods section below, prediction accuracy is generally considered strong if the C-statistic is 0.8 
or higher. The C-statistic is a metric ranging from zero to one but is not a percentage.

3 We find a similar pattern when we define overall accuracy as the share of students for whom the model correctly 
predicted their outcome, which we present in Table 2. Assuming a population of 1,000 returning students, the admin-only 
model correctly predicts the outcome for 32 more students than the LMS-only model, and the full model correctly 
predicts the outcome for 15 more students than the admin-only model. Similarly, assuming a population of 1,000 new 
students, the LMS-only model correctly predicts the outcome for 49 more students than the admin-only model, and the 
full model correctly predicts the outcome for 34 more students than the LMS-only model.
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Data

The data for this study come from two sources within the VCCS: (1) administrative 
records; and (2) behavioral trace data from Canvas LMS. The administrative data 
include detailed academic information from each term in which a student enrolls 
(beginning in Summer 2000), including their program of study, courses taken, grades 
earned, credits accumulated, and degrees or certificates awarded. Each student in the 
data has a unique anonymized identifier. Each instructor also has a unique anonymized 
identifier, which allows us to track instructors across courses and terms, beginning in 
2008. We also observe whether instructors are full-time or adjunct. The LMS data 
come from Canvas Data, a Canvas service that provides institutions with optimized 
access to their data for reporting and queries. The raw data include detailed records 
of almost every single activity students perform in the system since Summer 2019. 
For example, when a student clicks into a specific page, the raw data will capture the 
time stamp of this visit, the content of the page, and the time when the page is 
available to students. We provide more detailed information about the raw data in 
Appendix A. The LMS data include the same anonymized identifier as the admin data, 
allowing us to join the two data sources.

Outcome

Our outcome of interest is a binary measure for successful course completion, and is 
equal to one if the student earned a grade of A, B, or C and equal to zero for grades 
of D, F, or W.4 While a grade of D earns the student credit for the course and is 
considered a passing grade, within VCCS, students cannot satisfy some program 
requirements with a D, and other colleges and universities typically do not accept 
transfer credit for D grades.5

Sample

Our analytic sample includes students taking VCCS course sections that use Canvas 
from Summer 2019 through Spring 2021. Seventy-five percent of all VCCS course 
sections use Canvas, and our analytic sample consists of 81 percent of all VCCS 

4 We also built a multinomial random forest model with a categorical outcome of the six possible grades. We provide the 
confusion matrices for the models including the full set of predictors in Online Appendix Table A1. Comparing this output 
to Panel C of Table 2, we find that the multinomial random forest has nearly identical performance to the binary 
outcome specification. Because the multinomial random forest has slightly lower true negative rates, and is significantly 
more computationally intensive, we opted to use the binary outcome specification (instead of the multinomial) as our 
main model.

5 Note that if we inverted the outcome such that we were predicting whether the student struggled in the course as 
observed by earning a D, F, or W, the C-statistics would be identical to what we report throughout the article, and the 
TPR for predicting failure would equal the TNR for predicting success (and vice-versa).

https://doi.org/10.1080/19345747.2024.2308306
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student × course section observations during this time frame.6 We exclude Spring 2020 
from the sample due to the extreme disruptions of COVID-19 on higher education, 
which included the VCCS shifting to an emergency grading policy that changed the 
standard grading scale such that the possible grades were P+, P-, Incomplete, or 
Withdraw. We further restrict the sample to focus on college-level coursework for 
regularly enrolled students. Specifically, we exclude observations corresponding to 
dual-enrollment (i.e., high school students taking college-level coursework). We also 
exclude all observations outside the traditional A–F grading scale. The vast majority 
of such observations correspond to developmental courses, which are graded as pass 
or fail.

As shown in Panel A of Table 1, the final sample includes 1,173,878 student × course 
section observations from Summer 2019 through Spring 2021. This translates to 226,784 
unique students, 2,646 unique courses, and 63,994 unique course sections. We split 
the analytic sample into a training set and a validation set. The training set includes 
observations from the Summer 2019, Fall 2019, Summer 2020, and Fall 2020 terms; 
the validation set includes observations from Spring 2021. We use Spring 2021 as the 
validation sample with the intention of building a more generalizable model; specifi-
cally, having the observation window of the validation sample occur after the obser-
vation window of the training sample provides a more accurate estimation of model 
accuracy when applied to a practical setting (i.e., predicting current student success 
using a model trained on historical cohorts). We further split the analytic sample 
based on whether the student was enrolled at VCCS prior to the target term. As we 
detail below, if a student is in their first term and therefore has no prior academic 
history at VCCS, then we have far less information to include as predictors. Therefore, 
we build separate models for the observations in the analytic sample with no prior 
VCCS enrollment (“new-student” sample) versus observations in the analytic sample 
with at least one term of VCCS enrollment history (“returning-student” sample).

Panel B of Table 1 shows basic student characteristics for the full analytic sample 
and separately for the training and validation sets of the returning and new samples. 
Within the returning-student sample, students in the training and validation sets are 
similar on average. However, for the new-student sample, there are some differences 
in student-level characteristics. Compared to the training set, the validation set contains 
a significantly lower share of Hispanic students (13.1 percent versus 5.9 percent), a 
larger share of female students (55.2 percent and 58.4 percent) and significantly older 
students (22 versus 27 years old). These differences are likely due in large part to 
changes in the composition of the new-student population, with community colleges 
experiencing a 20.8 percent drop in new enrollments between Fall 2019 and Fall 2021 
(National Student Clearinghouse, 2021). Panel C of Table 1 shows basic course char-
acteristics across the relevant samples. Courses represented in the returning sample 
are more likely to be for 200-level, medical science, or applied technologies courses, 

6 Online Appendix Table A2 shows the summary statistics for the full VCCS population. Comparing this to Table 1, our 
analytic sample is quite similar to the full population

https://doi.org/10.1080/19345747.2024.2308306
https://doi.org/10.1080/19345747.2024.2308306
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less likely to be social sciences or humanities, and have smaller enrollments; these 
differences reflect that returning students are further along in their academic careers.

Administrative Predictors

We construct 279 predictors from the admin data to characterize students’ academic 
preparation, prior academic outcomes in community college classes, and enrollment 
timing and intensity choices. We describe these predictors here and motivate our 
predictor selection based on the longstanding literature devoted to understanding 
success factors of community college students. We also include a full list of our pre-
dictors in Online Appendix Table A3.

Table 1. S ummary statistics of analytic sample.
Returning-student sample New-student sample

Full analytic 
sample Training set Validation set Training set Validation set

(1) (2) (3) (4) (5)

Panel A: sample sizes
 S tudent × course × section 

observations
1,173,878 698,361 270,664 181,673 23,180

 U nique students 226,784 164,245 87,022 63,603 8,196
 U nique courses 2,646 2,246 1,989 1,399 966
 U nique course sections 63,994 47,145 16,645 33,942 8,284
Panel B: student characteristics
  White 51.6% 52.3% 50.7% 48.9% 50.0%
  Black 19.5% 19.0% 18.9% 19.1% 22.7%
 H ispanic 13.0% 13.9% 14.4% 13.1% 5.9%
 A sian 8.0% 7.9% 8.1% 8.6% 8.0%
 O ther 5.4% 5.2% 5.4% 6.1% 6.1%
 F emale 58.9% 59.9% 60.2% 55.2% 58.4%
 A ge 24.8 25.2 25.4 22 27
 C umulative GPA (at start of 

the target term)
2.91 2.91 2.88 N/A

 C redits accumulated prior to 
target term

32.6 32.6 32.5 N/A

Panel C: course characteristics
  200-level 50.1% 48.5% 50.8% 39.3% 39.2%
 A verage course-level 

enrollment
153.9 156.4 147.7 257 276.2

 A verage section-level 
enrollment

18.3 18.6 17.7 20.6 20.4

 A pplied technologies 18.0% 16.7% 16.8% 14.2% 13.9%
 A rts 9.7% 9.9% 10.1% 10.3% 7.8%
  Business/finance 7.3% 7.4% 7.9% 8.6% 8.8%
 E ngineering 21.8% 21.0% 22.1% 20.4% 24.0%
 F oreign languages 2.6% 2.8% 2.8% 3.6% 3.6%
 H umanities 6.9% 7.2% 7.6% 9.3% 9.4%
  Mathematics 1.0% 1.2% 1.1% 1.7% 2.1%
  Medical sciences 19.9% 20.2% 17.5% 14.4% 10.8%
 N atural sciences 3.3% 3.4% 3.6% 4.3% 5.4%
 S ocial sciences 9.6% 10.2% 10.4% 13.3% 14.3%

Notes: student race and sex are averaged across unique students, while student age and prior academic history are 
averaged across unique student × term cells. Course characteristics are averaged at the course level (with the exception 
of section-level enrollment, which is averaged at the course × section level). The unit of observation in the prediction 
model is student × term × course × section. For both the 1st term and 2+ terms samples, the training set consists of 
data from the Summer 2019, Fall 2019, Summer 2020, and Fall 2020 terms; the validation set contains observations 
from the Spring 2021 term.

https://doi.org/10.1080/19345747.2024.2308306


8 K. A. BIRD ET AL.

Our admin predictors can be divided into two broad categories: (1) non-course-
specific academic records; (2) and course-specific academic records and characteristics. 
The non-course-specific category includes predictors which provide an overview of 
the students’ academic progress thus far, such as cumulative GPA and total credits 
earned, all measured before the start of the target term (i.e., the term in which the 
student is taking the course for which we are predicting their performance). These 
predictors provide measures of students’ overall academic preparation for the target 
term (Kuh et  al., 2007). As Attewell et  al. (2012) highlight, “academic momentum” is 
strongly related to student success, so we also include term-level GPA and credits 
attempted in the term prior to the target term. The non-course-specific category also 
includes a predictor equal to the share of a student’s prior attempted credits that were 
developmental courses, which is another proxy for academic preparation (Boatman & 
Long, 2018). We also include information about students’ previous enrollment patterns 
(e.g., whether the student has previously “stopped-out” of college) and their current 
enrollment intensity, both of which are linked to ongoing success (Crosta, 2014).

For the course-specific predictors, we include course-section characteristics, many 
of which are also related to student success according to prior literature. These include 
whether the course is taught online (Kofoed et  al., Forthcoming), the enrollment count 
in the course section (Bedard & Kuhn, 2008; Cuseo, 2007), and whether the instructor 
is full-time versus adjunct (Bettinger & Long, 2010). Acknowledging that grading 
practices may differ substantially across subject areas—due potentially to differential 
grade inflation (Achen & Courant, 2009)—we also include the average grade in the 
target course in recent terms. We also include predictors related to the student’s aca-
demic preparation for the specific target course, including the student’s GPA in the 
target course’s prerequisites and whether the student is retaking the target course.

We are limited in what financial aid and income information we can observe for 
students, so we are unable to include predictors in the model related to affordability 
or socioeconomic factors, though we acknowledge these are also important factors of 
student success (Bailey et  al., 2004; Long, 2010). The one demographic factor we 
include as a predictor is student age, which is particularly important in the community 
college context where there are many non-traditionally aged students (CCRC, 2021). 
We are also limited in what we can observe for new students, as they have no prior 
academic records. For these new-student observations, we include 59 predictors related 
to general term-level information (e.g., the student’s current enrollment intensity) and 
characteristics of the target course (e.g., average grade in the course in recent terms).

LMS Predictors

LMS data provide comprehensive and fine-grained information about how students 
engage with the system and can capture important constructs and processes in students’ 
learning experience, such as cognitive strategies, affective states, and self-regulated 
learning (Fischer et  al., 2020). Therefore, an abundance of learning-analytics research 
has created various behavioral predictors from such trace data to predict learning 
outcomes (Gardner & Brooks, 2018; Wang & Mousavi, 2022). Importantly, behavioral 
predictors can be highly contextualized: different systemic or instructional decisions 
define the scope of behavior that students can exhibit and the meaning of specific 
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behavioral patterns (Gašević et  al., 2016). Predictors that incorporate more contextual 
information (e.g., the downloading of a specific document referenced on a course’s 
syllabus) tend to be more predictive of performance within a particular course but 
less universally available or meaningful (Arizmendi et  al., 2022). In this study, we 
investigate the value of behavioral trace data in institution-level models, where using 
relatively generalizable predictors is preferable both from a prediction accuracy stand-
point because of the large sample size it allows for, and from a feasibility standpoint 
due to the time required to generate highly contextual predictors for each course 
section. As such, we surveyed the literature that models student behavior in LMS in 
postsecondary contexts, and identified the most widely used behavioral measures that 
are relatively straight-forward to compute and that are predictive of academic perfor-
mance: number of click actions, study sessions, and total time online (Cicchinelli et  al., 
2018; Conijn et  al., 2017; Zacharis, 2015); average duration and irregularity of study 
sessions (Conijn et  al., 2017); number of active days (McCuaig & Baldwin, 2012) and 
weeks (Choi et  al., 2016); number of assignment submissions (Macfadyen & Dawson, 
2010; Motz et  al., 2019) and proportion of on-time submissions (Heo et  al., 2019); 
number of original discussion posts and discussion replies (Sher et  al., 2019); average 
length (Sher et  al., 2019) and depth (Barbosa et  al., 2020) of discussion posts. These 
cross-context measures are mostly derived from simple aggregation of the raw data 
(in contrast to complicated data-mining techniques) and capture engagement with 
either anything or the most popular instructional activities in the system.7

We compute the measures based only on students’ early-course behavioral traces, 
because behavioral predictors are mostly meaningful to instructors if they can help 
predict course performance in an early stage to allow for targeted interventions. While 
we focus on performance prediction within a target course, we also take into account 
students’ behavior in their concurrently and previously enrolled courses, which provides 
more comprehensive contextual information about their focal behavior, but is typically 
missing in learning analytics research. We compute the same behavioral measures from 
these additional courses and include them as predictors as well.

With these considerations, we construct a total of 50 predictors from the LMS data. 
We describe them below, and include a full list in Online Appendix Table A3. We 
also briefly describe the process of cleaning the raw data and generating these pre-
dictors in Appendix A to guide others attempting to do similar work.

•	 Early-term target course: measures of engagement in the target course during the 
first quarter of the course period (e.g., total number of click actions, total time 

7 While conceptually assignment grades would be good at predicting course performance, we did not include them due 
to critical concerns about data quality issues. Instructors use the “assignment” functionality in the LMS in various ways. 
While some use the function for what we may perceive as assignments, other instructors use them for class attendance, 
optional practice tests, or for other miscellaneous or idiosyncratic purposes and, in many of these cases, the grades are 
not consistently recorded. Therefore, using assignments grades for prediction would incur additional noise and biases.

https://doi.org/10.1080/19345747.2024.2308306
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spent online, percent of on-time assignment submissions), which we measure rel-
ative to the course section average8;

•	 Early-term concurrent courses: the same early-term measures of engagement in all 
other courses taken in the same term as the target course, averaged across these 
courses;

•	 Prior early term: the same early-term measures of engagement in all courses taken 
in prior terms, averaged across these courses;

•	 Prior full term: the same measures of engagement metrics in all prior courses, 
computed across the entire term instead of the first quarter and averaged across 
these courses.

If a student is in their first term, we only include the 21 predictors measuring 
engagement in current courses. All of the LMS predictors are normalized using the 
z-score within each term × course × section cell; in other words, the LMS predictors 
measure a student’s Canvas activity in a particular course, relative to other students 
in the same course section.9 This standardization accounts for differences in engage-
ment due to differences in the use of LMS across courses, instructors, and modalities.

Handling Missing Values

There is expected missingness in the data; for example, if a student has not taken 
prior courses in an academic cluster, then the average grade of prior courses in this 
cluster is missing. For another example, if an instructor does not enable the discussion 
feature of Canvas for their course section, then there is no information with which 
to compute the discussion-related predictors. All instances of missing predictors are 
due to these “not applicable” situations. We handle this missingness by setting missing 
values equal to zero and include indicators for whether a given predictor is missing.10

Methods

We use a random forest model to predict successful course completion. Random forest 
is a tree-based ensemble model commonly used in data-science research for predictive 
analytics. In other work where we investigate degree-completion prediction models 
using admin data from the VCCS (Bird et al., 2021), we find similar levels of accuracy 
for random forest and other commonly used models. For this article, we initially tested 

8 Within an academic term, different courses may vary in start date, end date, and length, so the measures are computed 
in relation to the specific period of each course. The first quarter of the course period is defined by dividing the total 
length of the course (in weeks) by four, rounded up to whole weeks. For example, for a course that lasted 10 weeks, 
early-term measures are computed based on the first 3 weeks of behavioral trace data.

9 Z-score normalization is applied to the predictors within each term × course × section cell, such that normalized values 
of each predictor within the cell has mean 0 and variance 1.

10 If we instead do not perform this imputation of missing values and allow the random forest model to differentiate 
between actual zeros and the missing values, our results are nearly identical (see Online Appendix Table A12).
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other models to predict course success, and random forest slightly outperformed the 
others. We use 5-fold cross-validation to tune the random forest model (i.e., choosing 
the optimal number of decision trees, the maximum depth, and the number of random 
features to include at each node for splitting), which reduces the risk of model over-
fitting (Breiman, 2002; Ghojogh & Crowley, 2019).11 All evaluation metrics we report 
are from a hold-out validation sample.

Our primary objective is to compare the predictive accuracy of models using the 
admin versus LMS data. Therefore, we estimate models using (1) admin-only predic-
tors; (2) LMS-only predictors; and (3) full set of predictors. For each of these three 
settings, we build separate models on the new-student and returning-student samples. 
To compare the accuracy of these six main models, we report the following evaluation 
metrics:

•	 C-statistic: a “goodness of fit” measure that is equal to the probability that a ran-
domly selected positive observation (i.e., a student who passed a particular course) 
has a higher predicted score than a randomly selected negative observation. The 
C-statistic is also referred to as the AUC, which stands for area under the ROC 
curve. A C-statistic of 0.5 corresponds to a model being no better than choosing 
at random, while a C-statistic of 1 corresponds to a model perfectly predicted the 
outcome. A C-statistic of 0.8 or higher is considered strong performance, and a 
C-statistic of 0.9 or higher is considered outstanding (Hosmer et  al., 2013). We 
provide standard errors for C-statistics following Hanley and McNeil (1982).12

•	 True positive rate (TPR): share of true positives that the model correctly predicts 
as succeeding (also called “recall”).13

•	 True negative rate (TNR): share of true negatives that the model correctly predicts 
struggling (also called “specificity”).

We also estimate course-specific models for five of the largest courses offered by 
VCCS: General Biology I (BIO101); College Composition I (ENG111); College 
Composition II (ENG112); Quantitative Reasoning (MTH154); and Pre-Calculus I 
(MTH161). We estimate admin-only, LMS-only, and full predictor models for each of 
these courses. With the exception of ENG111, the vast majority of observations (par-
ticularly in the validation sets) for these courses are from returning students; therefore, 
we combine the new- and returning-student samples for the course-specific models.14

11 In Online Appendix Table A4, we display the optimized values of these parameters for the six main models. For other 
model parameters, we use the default values set by the Python scikit-learn library.

12 This standard error measures the uncertainty in applying the fixed predictive model obtained from the current training 
set to a new validation set, rather than the uncertainty resulting from fitting the predictive model on a new training set.

13 Another common evaluation metric is precision, which is the share of observations that the model predicts will succeed 
that actually succeed. The pattern of the precision values very closely follows our results for TPR; therefore, we display 
only TPR for concision.

14 We include an indicator variable for whether each observation corresponds to a course taken during the first term. If 
a predictor (e.g., cumulative GPA prior to taking the course) is not available for the new-student observations, the value 
of that predictor is set to 0 for all new-student observations.
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Because our outcome is binary, the immediate output of the model is a predicted score 
for each observation ranging from zero to one, with a value closer to one indicating a 
higher predicted probability of course “success” (earning an A, B, or C). Therefore, we 
set a threshold in predicted score to delineate observations into two categories: those 
predicted to successfully complete the course (i.e., those with a predicted score at or 
above the set threshold), and those predicted to not. We set the threshold equal to the 
course completion rate within the training sample used for each model (77.8% for the 
returning training sample, and 70.9% for the new-student training sample).15

Results

Comparing Prediction Accuracy Based on Types of Predictors

In Figure 1, we present several accuracy metrics for the prediction models using admin-only 
data, LMS-only data, or both admin and LMS data. Panel A presents C-statistics, while 
Panels B and C present true-positive and true-negative rates, respectively. Within each 
panel, we present accuracy metrics for the returning-student sample on the left and for 
the new-student sample on the right. As we show in Panel A, the prediction model trained 
on the returning-student sample with admin-only data achieves a high level of accuracy, 
with a C-statistic of 0.855. The model trained on LMS-only data and the returning-student 
sample has substantially lower accuracy, with a C-statistic of 0.779. Combining both admin 
and LMS data with the returning-student sample leads to modestly higher accuracy than 
we obtain with the admin-only data, with a C-statistic of 0.872. The standard errors of 
these C-statistics, shown in parentheses below the C-statistic values, are all less than 0.001, 
indicating that these are statistically distinct from one another.

Among the new-student sample, on the other hand, we find comparatively greater 
predictive value from the LMS-only data: whereas the model trained on admin-only data 
has a C-statistic of 0.728, the model trained on LMS-only data has a C-statistic of 0.775. 
Combining both admin and LMS data leads to a proportionally greater gain in accuracy 
(C-statistic of 0.825) than we observed in the returning-student sample. Each with stan-
dard errors of 0.003, these C-statistics are also statistically distinct from one another.

This pattern of relationships makes intuitive sense. First, the prediction models are 
more accurate for the returning-student sample than the new-student sample, which 
we would expect given that we have more data—and in particular more observed 
academic performance—on which to train the model.16 Second, the comparative value 
of LMS measures of engagement is higher for new students, for whom baseline data 
on academic performance is much more limited.

15 While C-statistics are independent of the threshold, TPR and TNR can be highly sensitive to the threshold chosen. Other 
common methods used to set the threshold, such as maximizing the F1 score, can result in significant differences in 
thresholds set from model to model. Our approach allows for better comparison of TPR and TNR across models.

16 It is possible that the lower accuracy is due (at least in part) to the smaller number of observations for new students. 
However, as we show in Table 1, there are still over 200,000 observations in the new-student sample, so we think it is 
unlikely that the smaller sample size is driving the lower accuracy of the new-student models.
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This same basic pattern of relationships holds when we consider TPR or TNR 
as our accuracy metrics instead of C-statistics (Panels B and C of Figure 1). All 
models achieve high TPRs, with the highest TPR among the returning-student 

Figure 1.  Prediction model accuracy by category of predictors and sample of students.
Notes: each bar corresponds to a separate random forest prediction model using the set of predictors indicated by the 
color of the bar, and observations from the sample of students based on academic history indicated by the x-axis label.
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sample and with the model trained on both admin and LMS data. Specifically, 
89.9% of students who actually earn an A, B, or C are predicted by the model to 
complete the course. The TNRs are significantly lower than the other model eval-
uation metrics we consider (ranging from 50.5–62.1%) but follow the same pattern 
across the six model variations. The relatively low TNR is an expected result when 
a large majority of observations achieve the outcome, as is the case with our models 
(Spelmen & Porkodi, 2018).17

Table 2 displays confusion matrices for the six models, which provide a more 
fine-grained comparison of the models’ predictions with students’ actual outcomes. 
These matrices show the share of observations for each combination of predicted 
outcome (A/B/C versus D/F/W) and actual grade received (A, B, C, D, F, or W). 
Intuitively, we find that the model is more accurate for the highest and lowest 
grades compared to middle grades. For example, for the returning-student model 
with full predictors, 95.5% of students who actually received an A were Pred(ABC) 
compared to 74.4% of students who received a C. Most starkly, only 37% of 
students who received a D were Pred(DFW), compared to 62% of students who 
received an F and 77.9% of students who received a W.18 We also report the 
overall accuracy at the bottom of each matrix, which is equal to the percent of 
observations with accurate predictions: Pred(ABC) with actual grades of A, B, 
or C-plus Pred(DFW) with actual grades of D, F, or W. These overall accuracy 
rates follow a very similar pattern to the other evaluation metrics shown in 
Figure 1.

We acknowledge that colleges are most interested in using course performance-prediction 
models to identify students at risk of failing, and that these relatively low TNR values 
may raise concerns about the overall practical value of these models.19 Generally, 
though, our models’ accuracy is similar to (or better) than other those found in other 
articles predicting course accuracy that incorporate LMS data. In Yu et  al. (2020), the 
TPRs of their models using institutional or click-data range from 0.687 to 0.750, and 
the TNRs range from 0.515 to 0.649. In Aguiar et  al. (2014), the C-statistic for the 
model with all-academic data is 0.654, and the C-statistic for their best performing 
model that includes top-academic + engagement data is 0.929. In Crossley et  al. (2016), 
their overall accuracy rate is 76.1 percent. In assessing prediction accuracy, it is also 
important to consider the counterfactual of how scarce student supports would be 

17 In instances where the failure rate is higher, we would expect to see larger TNR values. we observe this when we build 
similar models using admin data to predict degree completion (Bird et al., 2021).

18 These grade-specific accuracy rates are quite similar to the alternative multinomial random forest model. Our main 
model (which uses the binary outcome ABC versus DFW) has slightly lower accuracy rates for students with grades A, B, 
and C, but slightly higher accuracy rates for students with grades D, F, and W. See Online Appendix Table A1.

19 We attempted to improve the models’ true negative rates by upweighting observations of students who did not 
achieve the outcome. Specifically, we multiplied each observation by a factor that is equal to the inverse of the frequency 
of its outcome. For instance, if 70% of observations in the training sample whose outcome is success and 30%of 
observations whose outcome is failure, then each success observation will be multiplied by 1/0.7 = 1.43, and each failure 
observation will be multiplied by 1/0.3 = 3.33. Online Appendix Table A5 shows the results of these upweighted models. 
We find very similar levels of prediction accuracy in the upweighted model compared with our main version (shown in 
Figure 1); the TNRs of the upweighted model are all slightly lower than the main version.

https://doi.org/10.1080/19345747.2024.2308306
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allocated in the absence of the prediction model. As we show in Online Appendix 
Table A6, the TNRs of our full models are 23 –37% higher than if we used cumulative 
GPA or total Canvas clicks alone to identify at-risk students, and two to three times 
greater than if we used random guessing.20 While the models clearly provide a mean-
ingful improvement above these basic targeting strategies, it is ultimately up to the 

20 Specifically, the TNRs in columns (2) and (3) are based on predicting that the students with values of cumulative GPA 
or total clicks below the Xth percentile would earn a D/F/W, where X is equal to the mean D/F/W rate in the training 
samples. These mean D/F/W rates are also equal to the TNR values in column (4).

Table 2. C onfusion matrices.
Panel A: admin predictors

Returning-student sample New-student sample

Actual grade Pred (ABC) Pred (DFW) Total Actual grade Pred (ABC) Pred (DFW) Total

A 40.1% 2.4% 42.4% A 37.4% 6.0% 43.3%
B 20.2% 3.1% 23.3% B 13.8% 4.1% 17.9%
C 8.9% 3.1% 12.1% C 6.9% 2.8% 9.7%
D 2.9% 1.7% 4.6% D 3.0% 1.7% 4.7%
F 4.7% 6.2% 10.8% F 9.7% 6.3% 16.1%
W 1.6% 5.2% 6.8% W 1.7% 6.6% 8.3%
Total 78.4% 21.6% 100.0% Total 72.4% 27.6% 100.0%
% Observations with accurate prediction = 82.2% % Observations with accurate prediction = 72.7%

Panel B: LMS predictors

Returning-student sample New-student sample

Actual Grade Pred(ABC) Pred(DFW) Total Actual Grade Pred(ABC) Pred(DFW) Total

A 38.9% 3.5% 42.4% A 38.3% 5.1% 43.3%
B 19.6% 3.7% 23.3% B 14.2% 3.7% 17.9%
C 9.0% 3.0% 12.1% C 6.9% 2.7% 9.7%
D 3.0% 1.6% 4.6% D 3.0% 1.7% 4.7%
F 4.8% 6.0% 10.8% F 6.8% 9.3% 16.1%
W 2.9% 3.9% 6.8% W 3.2% 5.1% 8.3%
Total 78.4% 21.6% 100.0% Total 72.4% 27.6% 100.0%
% Observations with accurate prediction = 79.0% % Observations with accurate prediction = 75.6%

Panel C: full predictors

Returning-student sample New-student sample

Actual grade Pred (ABC) Pred (DFW) Total Actual grade Pred (ABC) Pred (DFW) Total

A 40.5% 1.9% 42.4% A 39.7% 3.6% 43.3%
B 20.4% 2.9% 23.3% B 14.6% 3.3% 17.9%
C 9.0% 3.0% 12.1% C 6.8% 2.8% 9.7%
D 2.8% 1.7% 4.6% D 2.9% 1.8% 4.7%
F 4.1% 6.7% 10.8% F 6.6% 9.5% 16.1%
W 1.5% 5.3% 6.8% W 1.8% 6.5% 8.3%
Total 78.4% 21.6% 100.0% Total 72.4% 27.6% 100.0%
% Observations with accurate prediction = 83.7% % Observations with accurate prediction = 79.0%

Notes: each of the six groupings shows the confusion matrix for the prediction model that includes the set of predictors 
indicated by the column heading (admin, LMS, full), and the sample of observations based on timing (returning, 
new). Within a confusion matrix, each cell contains the share of observations in the validation sample who received 
a grade as indicated by the row labels, and was predicted to receive a grade as indicated by the column labels. Note 
that the column “Total” contains the sum of observations within each row, while the row “Total” contains the sum 
of observations within each column.
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discretion of administrators whether the amount of model error is acceptable within 
their context.21

Next, we explore whether certain categories within the admin and LMS data are 
more predictive of course performance. If institutional researchers face time or com-
putational constraints in constructing predictors, or if they wish to generate predictions 
prior to or at the beginning of a term, we believe it would be informative to under-
stand the relative predictive value of these various categories. We divide the admin 
predictors into two separate categories: non-course-specific records and course-specific 
records. We divide the LMS data into four categories: early-term target course, 
early-term concurrent, prior early term, and prior full term. Each of these categories 
are described in the Data section above. Some categories contain more-complexly 
specified predictors than others, and some categories are only available after the target 
course is under way (i.e., the early-term categories). We display results in Table 3, 
where each row corresponds to a separate model trained just on the categories of 
predictors indicated. Panel A presents the C-statistics for the sample of students with 
prior VCCS experience while Panel B presents the C-statistics for the sample of stu-
dents in their first term. The first two rows in Panel A repeat what we have shown 
earlier: we obtain the highest accuracy level from the model that leverages all admin 
and LMS predictors, but the model trained on admin-only predictors achieves nearly 
the same level of accuracy. Within this total set of admin predictors, a subset of 41 
predictors that measure a combination of overall (i.e., not course-specific) academic 
performance and students’ age achieves similar accuracy (C-statistic = 0.841). By 
comparison, a model trained on 238 course-specific predictors has notably lower 
accuracy (C-statistic = 0.778). The remaining rows in Panel A present C-statistics for 
models trained on different combinations of LMS predictors. The subset of LMS pre-
dictors that measure students’ engagement in the target course contribute substantially 
more to prediction accuracy than LMS measures of students’ engagement in prior or 
concurrent courses. Among the new-student sample (Panel B), we observe a generally 
similar pattern of results, though, as we show earlier, overall prediction accuracy among 
this sample of students is lower.22

21 For instance, a college may be willing to accept lower levels of model accuracy if they are using the predictions to 
target a low-cost messaging campaign to at-risk students for which there is little perceived downside if well-performing 
students also receive the messages. However, if a college instead wants to target resource-intensive supports to at-risk 
students and they are tightly constrained in the number of students they can provide these supports to, then the college 
would likely want to invest substantial time in improving their prediction accuracy.

22 We complement this analysis by also calculating feature importance (FI) scores for the models with full predictors; we 
report the top 30 predictors of the returning-student and new-student models in Online Appendix Table A7. The FI scores 
are based on the mean decrease in impurity and provide a metric of each predictor’s contribution to the overall model’s 
accuracy (Breiman 2002). Consistent with what we show in Table 3, most of the highest feature-importance predictors 
for the returning-student model capture some aspect of students’ prior credit accumulation and GPA, while most of the 
highest feature-importance predictors for the new-student model are LMS measures from the target course. Five of the 
top 10 predictors in terms of feature importance are common between the two samples of students: the number of total 
credits attempted in the target term, the two measures of historic performance in the course, and the two LMS measures 
of student engagement.

https://doi.org/10.1080/19345747.2024.2308306


Journal of Research on Educational Effectiveness 17

Generalizability

Given our primary goal of informing research and practice and the value-addition of 
LMS data in predictive modeling, it is important to consider how we expect our results 
to generalize in different settings. There are several important contextual considerations: 
(1) our setting is a community college system, which is open-access and enrolls a 
diverse student body; (2) our data spans a relatively short time window, which includes 
COVID; and (3) VCCS instructors have a great amount of flexibility in how they set 
up their Canvas pages, and these course design decisions are likely related to the type 
of content covered in the course. In general, we would expect greater additional pre-
dictive value of the LMS predictors within other contexts where the LMS is used more 
comprehensively or consistently. For example, if a college required that all instructors 
maintain accurate gradebooks on Canvas (which is not the case for VCCS, at least 
during our sample window), then the predictive value of the LMS data could be sub-
stantially higher. Conversely, if a college has more comprehensive information about 
students before they matriculate (e.g., high school transcripts and entrance exam scores, 
which are often required by selective four-year institutions), then it’s likely that the 
LMS data would add less predictive value beyond the administrative data for first-term 
students.

While it is not possible to provide definitive answers to how our results will gen-
eralize in other contexts, we can provide some additional details to consider. First, we 
provide summary statistics for all early-term LMS predictors for the target course in 
Table 4. Column (1) shows the mean, median, and standard deviation of the 12 pre-
dictors for the full analytic sample. If the values of these LMS predictors are substan-
tially different in another context, then our main conclusions may not hold in that 

Table 3.  C-statistics of models using different predictor subcategory combinations.
Panel A: model with returning-student observations

Predictor categories # predictors C-statistic Std Err

All 329 0.872 (0.0007)
All admin 279 0.855 (0.0007)
Non–course specific 41 0.843 (0.0008)
Course-specific 238 0.778 (0.0009)
All LMS 50 0.778 (0.0009)
Early-term target course + early-term concurrent 21 0.751 (0.0010)
Early-term target course 12 0.733 (0.0010)
Early-term concurrent 9 0.604 (0.0012)
Prior early-term + prior full-term 29 0.713 (0.0011)
Prior early-term 13 0.665 (0.0012)
Prior full-term 16 0.709 (0.0011)

Panel B: model with new-student observations
Predictor categories # predictors C-statistic Std Err

All 80 0.825 (0.0027)
All admin 59 0.728 (0.0034)
Non–course specific 34 0.602 (0.0039)
Course-specific 25 0.664 (0.0037)
All LMS (early-term target course + concurrent) 21 0.775 (0.0031)
Early-term target course 12 0.754 (0.0032)
Early-term concurrent 9 0.595 (0.0040)

Notes: each row corresponds to a separate random forest prediction model using the set of predictors indicated in 
the first column. All prior LMS predictors and course-subject-specific predictors are not available for new-student 
observations; some course-specific and non–course specific academic records are unavailable for new-student 
observations.
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context. In columns (2) through (6) of Table 4, we further show how these predictor 
values vary across the time line of our analytic sample. Not surprisingly, the mean 
and median values are typically higher for the COVID-impacted terms of Summer 
2020, Fall 2020, and Spring 2021, when most instruction was still occurring online. 
Summer 2020 and Fall 2020 make up roughly half of the training sets, and Spring 
2021 constitutes the full validation sets. Therefore, if a college has since departed from 
its COVID-influenced online instruction practices, then again our main conclusions 
may not hold in that context.23

To provide some concrete examples of how context can influence our results, we 
next explore how the relative value of the LMS data varies across VCCS courses. As 
other researchers have noted (e.g., Baker et  al., 2020), the value of LMS predictors is 
driven in some part due to course-specific context. English instructors may structure 
their courses on the LMS significantly differently than math instructors. These differ-
ences mean that some LMS predictors may be more or less valuable; for instance, a 
low value for frequency of discussion-forum posts could indicate either a student is 
either unengaged, or alternatively that discussion forums are not an important part of 
the course design. We explore the question of how results differ across courses in two 
ways. First, we compute a separate C-statistic for each of the top 50 courses by applying 
our models trained on the full sample to course-specific validation sets. We present 
these results in Figure 2, where we observe substantially more variation in the accuracy 
of the LMS-only models compared to the admin-only or full predictor models. Within 
the LMS-only models, math and science courses consistently have the lowest C-statistic—
all courses with C-statistics below 0.75 are either math, chemistry, biology, or IT. This 
is not the case for the admin-only models, with several chemistry and biology courses 
having C-statistics above 0.85. Second, we compare the accuracy of models trained on 
course-specific samples (e.g., all students who enroll in English 111, the College 
Composition course offered across the VCCS). We focus this analysis on five 
large-enrollment courses in core subjects that typically function as “gateways” for 
students to take higher-level courses and fulfill degree requirements across most VCCS 
programs of study. Specifically, we build course-specific performance prediction models 
for the two-course sequence of College Composition (ENG111 and ENG112); General 
Biology (BIO101); and two introductory, college-level math courses, Quantitative 
Reasoning (MTH154) and Pre-Calculus I (MTH161).24

23 Because all course sections, regardless of modality, may use the LMS for a variety of course aspects, we include 
observations from online, in-person, and hybrid course sections in our analytic sample. We explore differences in 
prediction accuracy for modality-specific models in Appendix B and intuitively find that the accuracy of the LMS-only 
models are substantially higher for the online sample compared to the in-person sample, and that the predictive 
value-add of the LMS data is higher for the online sample.

24 In Online Appendix Table A8, we present summary statistics for these courses. Each course is offered in hundreds of 
sections each term across the 23 VCCS colleges, and each enrolls thousands or even tens of thousands of students per 
term. Student performance across these courses tends to be relatively low, with mean GPAs ranging from 2.22 in MTH161 
to 2.73 in ENG112. All five courses have a high rate of students earning a D, F, or W, which range from 26.7 percent in 
BIO101 to 41.5 percent in MTH161. A sizable share of enrollments in four of the five courses (all except ENG112) are 
students in their first term at VCCS. For instance, 25% of students in MTH154 and 52.1% of students in ENG111 are in 
their first term.
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Table 4. S ummary statistics for early-term LMS predictors for the target course.

Full Sample
Summer 

2019 Fall 2019
Summer 

2020 Fall 2020 Spring 2021

(1) (2) (3) (4) (5) (6)

Panel A: term-specific samples
Total time, in minutes (Mean) 518 399 357 563 704 519

(Median) 335 255 209 396 497 344
(Std dev) 599 471 455 578 720 583

Total click count (Mean) 875 746 619 933 1115 920
(Median) 641 535 421 721 862 687
(Std dev) 918 808 687 902 1075 922

Average session length, in minutes (Mean) 12.86 15.57 9.29 17.13 14.73 12.15
(Median) 8.35 10.95 5.77 11.47 9.99 8.16
(Std dev) 15.01 16.94 11.74 18.73 16.04 13.67

Standard deviation of session length (Mean) 26.30 28.20 20.03 31.18 30.80 25.68
(Median) 20.53 22.34 14.91 24.72 25.16 20.23
(Std dev) 22.14 23.73 19.24 24.54 23.09 20.63

Assignment Submission count (Mean) 8.11 8.37 7.94 7.83 8.08 8.39
(Median) 5.00 5.00 5.00 4.00 5.00 4.00
(Std dev) 10.68 11.11 10.20 10.38 10.55 11.40

Assignment submission available (Mean) 50.7% 45.7% 53.7% 45.2% 54.5% 47.3%
Share assignment submissions 

on-time
(Mean) 0.66 0.64 0.58 0.72 0.67 0.68
(Median) 0.71 0.67 0.57 0.83 0.75 0.75
(Std dev) 0.32 0.33 0.32 0.31 0.32 0.32

On-time assignment submission 
available

(Mean) 33.0% 25.0% 27.4% 32.6% 40.1% 34.6%

Discussion post count (Mean) 1.19 1.19 0.87 1.47 1.33 1.27
(Median) 0.00 0.00 0.00 1.00 1.00 0.00
(Std dev) 1.81 1.73 1.61 1.83 1.92 1.88

Discussion reply count (Mean) 1.47 1.56 1.06 1.93 1.63 1.54
(Median) 0.00 0.00 0.00 0.00 0.00 0.00
(Std dev) 2.95 2.92 2.53 3.20 3.15 3.03

Average discussion post depth (Mean) 1.47 1.49 1.46 1.51 1.47 1.46
(Median) 1.50 1.57 1.50 1.57 1.50 1.50
(Std dev) 0.36 0.35 0.36 0.37 0.36 0.35

Average discussion post length, in 
words

(Mean) 661 705 663 679 638 663
(Median) 548 597 548 567 525 550
(Std dev) 508 508 503 510 506 511

N 1,173,878 102,744 332,187 120,040 325,063 293,844

Panel B: course-specific samples

ENG 111 ENG 112 BIO 101 MTH 
154

MTH 161

(7) (8) (9) (10) (11)

Total time, in minutes (Mean) 655 604 533 532 501
(Median) 477 444 330 321 254
(Std dev) 653 587 628 628 671

Total click count (Mean) 1013 948 996 680 665
(Median) 800 765 698 478 432
(Std dev) 920 860 1029 705 771

Average session length, in minutes (Mean) 13.30 13.47 11.02 12.02 11.69
(Median) 9.47 9.62 6.96 7.41 6.33
(Std dev) 13.80 13.87 12.94 14.27 15.51

Standard deviation of session length (Mean) 27.26 27.58 24.05 25.11 24.91
(Median) 22.46 22.26 18.98 18.89 17.47
(Std dev) 20.73 20.78 20.52 21.89 23.91

Assignment Submission count (Mean) 7.55 7.44 9.59 9.54 6.82
(Median) 5.00 5.00 5.00 4.00 3.00
(Std dev) 7.71 7.12 12.68 13.29 9.51

Assignment submission available (Mean) 66.0% 60.3% 66.5% 51.4% 53.1%
Share assignment submissions on 

time
(Mean) 0.61 0.65 0.64 0.56 0.65
(Median) 0.64 0.67 0.67 0.50 0.67
(Std dev) 0.30 0.30 0.33 0.36 0.33

(Continued)
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In Figure 3 we present C-statistics and their standard errors for course-performance 
models trained separately on the sample of students enrolled in each of the five courses. 
Across all five courses, models that combine admin and LMS data achieve the highest 
levels of accuracy, and accuracy levels are generally high for the course-specific mod-
els.25 Across four of the five courses (all except ENG111), we find that models trained 
on admin-only measures meaningfully outperform models trained on LMS-only data. 
In the case of ENG111, the model trained on LMS-only data does outperform the 
model trained on admin-only data (C-statistic of 0.81 compared to 0.78); this makes 
intuitive sense as a sizeable share of ENG111 students (56.2 percent of the training 
sample) are in their first term at VCCS.26

The differences in LMS-only models across courses in Figure 3 reflect the pattern 
from Figure 2, with C-statistics ranging from 0.81 for ENG111 to 0.70 for MTH161 
for models using all LMS predictors. This finding is directly related to the values 
of the LMS predictors, which we provide for each of the five courses in columns 
(7) through (11) of Table 4. Overall, we see that the courses for which LMS pre-
dictors add the greatest value are those with the highest averages of LMS predictors. 

25 In Online Appendix Table A9, we show which groups of predictors contribute most to overall prediction accuracy within 
the course-specific performance prediction models. We again observe a very similar pattern to what we found with the 
prediction model trained on all courses.

26 Online Appendix Figure A1 shows very similar patterns for TPR and TNR across the 15 course-specific models represented 
in Figure 3. Online Appendix Figure A2 shows the course-specific performance of the models trained on the full training 
sample for the five courses (i.e., the same metric described in Figure 2). These C-statistics are slightly higher (one percent 
or less) than the C-statistics from the course-specific models shown in Figure 3. In other words, the models trained on 
the full training set have very similar levels of accuracy to course-specific data, regardless of which type(s) of predictors 
are included.

Full Sample
Summer 

2019 Fall 2019
Summer 

2020 Fall 2020 Spring 2021

(1) (2) (3) (4) (5) (6)

On-time assignment submission 
available

(Mean) 48.0% 48.7% 43.8% 25.2% 24.4%

Discussion post count (Mean) 1.83 2.10 0.53 0.50 0.36
(Median) 1.00 2.00 0.00 0.00 0.00
(Std dev) 2.30 2.11 1.32 1.00 0.90

Discussion reply count (Mean) 2.01 2.73 0.81 0.61 0.45
(Median) 0.00 1.00 0.00 0.00 0.00
(Std dev) 3.22 3.62 2.59 1.66 1.48

Average discussion post depth (Mean) 1.47 1.50 1.48 1.46 1.45
(Median) 1.50 1.59 1.60 1.50 1.50
(Std dev) 0.35 0.33 0.37 0.40 0.38

Average discussion post length, in 
words

(Mean) 751 826 488 459 388
(Median) 648 740 406 375 317
(Std dev) 531 514 354 345 307

N 54,232 31,457 38,806 25,175 19,981

Notes: columns 1 and 7–11 contain student × course-section observations from both the training and validation sets. 
If an observation has no online sessions, then their values of “average session length, in minutes” and “standard 
deviation of session length” is set to missing. If a student has no discussion posts, then their “average discussion 
post depth” and “average discussion post length, in words” is set to missing. Discussion post depth is defined such 
that a value of 1 corresponds to the original post, a value of 2 corresponds to the first reply, and so forth.

Table 4.  Continued.
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We see that while total time online is more similar across courses (ranging from 
507 minutes for MTH161 to 641 minutes for ENG111), the two math courses have 
approximately one-third fewer click actions than the English and Biology courses. 
The starkest difference is average word count in the predictors describing discussion 
posts: the average number of discussion posts is roughly four times higher for the 
English versus math courses, and, within discussion posts submitted, those for the 
English courses are roughly twice as long as for the math courses. These results 
further support the intuitive hypothesis that the value-add of the LMS data is 
greatest when students and instructors engage more with the LMS data through the 
coursework.

It is worth noting that our analyses used a limited set of LMS predictors based on 
existing learning-analytics research. Because there are an infinite number of predictors 
one could construct from the LMS data, any prediction model will necessarily rely on 
a subset of these possible predictors; the choice of which predictors to generate and 
include could impact the results. However, we believe that our results reasonably reflect 
the overall predictive utility of LMS data. This is because both existing research we 
draw on and our large sample cover a broad range of instructional and institutional 
contexts and represent the majority of use cases of Canvas LMS. In addition, our 
selected predictors cover student behavior around different functionalities of the LMS. 
While there can be variants or more complicated forms of predictors, they might either 
be highly correlated with what we included or only available for a small number of 
courses or students, and therefore might not provide substantial marginal predictive 
value when adopted at the institutional level.

Figure 2. D istribution of C-statistics for course-specific validation samples, top 50 courses.
Notes: Top 50 courses determined by number of observations in the validation sample. For each course, we compute a 
separate C-statistic by applying the models trained on the full sample to only observations in the validation set corre-
sponding to that course. The value labels indicate the minimum, mean, and maximum values of the distribution of 
c-statistics.
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Discussion

As LMS software is becoming increasingly more prevalent in higher education—particularly 
in a post-COVID era characterized by flexibility of instruction modality—researchers and 
higher education institutions are increasingly interested in harnessing the LMS-generated 
data for various instructional and analytic purposes. However, making use of LMS data 
can be very costly in terms of personnel time, data storage, and computing power. For 
example, the VCCS LMS data for a single term is roughly one to two terabytes. Converting 
the raw data (which includes a row for each navigation or “click” a student makes within 
the LMS) into usable predictors requires expertise and a significant time investment. 
Particularly given limited resources at institutions like community colleges, it is important 
to understand the potential value of LMS data in predictive analytics.

In this article, we show how including LMS data improves the accuracy of models 
predicting course performance, relative to models using only admin data. We find that 
the accuracy gain from LMS data varies significantly across contexts, even within a com-
munity college system that uses the same LMS software across all courses and institutions. 
Specifically, LMS data add little value in predicting course performance for returning 
students. Including LMS predictors to the admin-only returning-student model increases 
the share of students with accurate predictions by 1.8%. However, in the case of new 
students, LMS-only data outperform admin-only data, and the combination of LMS and 
admin data has significantly higher accuracy compared with using only one data source. 

Figure 3.  C-statistics for course-specific models, by predictor category.
Notes: each bar corresponds to a separate random forest prediction model using the set of predictors indicated by the 
color of the bar, and observations from the course indicated by the x-axis label. Standard errors of the C-statistics are in 
parentheses.
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Again, adding LMS predictors to the admin-only new-student model increases the share 
of students with accurate predictions by 8.6%. We also find significant variation across 
courses in the accuracy from and value-addition of LMS data. Intuitively, the prediction 
accuracy is highest for courses where students are more engaged within the LMS system, 
as observed by time spent logged in and contributing to discussion boards. Overall, our 
results suggest that colleges should be mindful of the types of courses for which they plan 
to use predictive analytics when deciding whether to invest in LMS data. Specifically, we 
suggest that LMS data add substantial predictive value and may be worth the investment 
for courses that (1) enroll many new students; (2) actively use LMS for instructional 
design; and (3) a significant share of students do not succeed in the course. The relatively 
poor accuracy of the admin-only data for new students that we find (C-statistic of 0.728, 
which we would classify as insufficient accuracy for implementation) suggests that if LMS 
data are not available for new students, then other data-collection efforts (e.g., incorporating 
high school transcripts) could substantially benefit predictive analytics in that setting. More 
broadly, our results demonstrate that researchers and educators should continue to critically 
investigate whether making use of these data results in meaningfully better models or 
accuracy than can be achieved with more traditional data sources and methods. Still, it 
is important to note that in this article we are solely focused on the predictive value-addition 
of LMS data in terms of increasing overall prediction accuracy. There are other potential 
benefits to incorporating the LMS data into prediction models. Specifically, incorporating 
LMS data into existing predictive models could decrease algorithmic bias (Yu et  al., 2020). 
In a recent exploration of algorithmic bias in admin-only models, our results suggest that 
administrative predictors are less useful at predicting Black student outcomes compared 
with White students, which suggests that including additional data sources has the potential 
to mitigate bias (Bird et al., 2024). In future work, we will test this point explicitly within 
the VCCS context. For researchers or administrators interested in learning more specifically 
about how we work with the LMS and admin data to construct predictors, and how we 
build the predictive models described in this article, we have made our codebase public 
at https://github.com/nudge4/admin_vs_lms_data_public.
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Appendix A:  Canvas Data and Generation of LMS predictors

The Canvas Data service organizes information across 95 tables at the time of this study, following 
typical data-warehouse conventions.27 Each table tracks a specific aspect of user activity, and usually 
a few relevant tables need to be joined together to capture the full picture of even one type of activ-
ity (e.g., assignment submissions need to be joined with the assignment information). The most gran-
ular information about student activities comes from one table (requests) which includes click action 
records (a.k.a., clickstream data) (see Online Appendix Figure A3 for a snapshot and Baker et  al. 
(2020) for a comprehensive introduction). While different courses may be organized and designed 
differently, the data they generate all fit into the same schema of 95 tables.

We purchased a read-only Amazon Redshift data-warehouse instance where the 95 tables are 
hosted and ran a series of SQL queries to aggregate raw tables by area of activity (e.g., click 
actions, discussion posts, assignment submissions). After transferring the aggregated tables to a 
high-performance computing (HPC) environment where the administrative data were hosted, we 
identified the full course period and the span of “early term” for each course from the adminis-
trative data. Finally, we ran a series of Python codes to compute the 50 measures (predictors) 
according to the measure definitions and specified time spans.

The organization of 95 tables in Canvas Data is identical across institutions that adopt the 
system, so the processes described above are largely applicable in different institutional contexts. 
However, there are some potential obstacles that institutions may face when replicating this work. 
For example, the cost of technical infrastructure to store and process the gigantic raw data can 
be unaffordable, especially for low-resourced institutions. Also, the mechanism of connecting 
LMS and administrative data varies across institutions and can be complicated. Specifically, the 
organization of courses on the administrative side and the LMS side might be misaligned. To 
accurately figure out this connection usually requires different administrative offices, such as reg-
istrar and IT, to coordinate, which adds to the logistic costs.

27 The documentation of these tables can be found at https://portal.inshosteddata.com/docs.
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Appendix B:  comparison of predication accuracy for online versus 
in-person observations

While all VCCS courses can use Canvas’s LMS features, online courses typically require more 
LMS interaction with the student.28 We show the number of online versus in-person observations 
in Panel A of Online Appendix Table A9. The majority (73.8%) of the student-by-course section 
observations in our analytic sample are online, which is driven in some part by the inclusion of 
Fall 2020 and Spring 2021, during which most coursework was still online due to the COVID 
pandemic, in our analytic sample. Indeed, 94.4 %of observations in the validation set, which 
consists entirely of Spring 2021 observations, are online. Online enrollment in the validation set 
is over 99% for ENG 111, ENG 112, and BIO 101.

Panel B of Online Appendix Table A6 shows that for most (but not all) of the early target 
term LMS predictors, the online observations have considerably higher mean values. For example, 
the average total minutes spent logged in was 655 minutes for online observations and 279 for 
in-person observations. However, assignment submission data is available for more in-person ob-
servations (57.3 percent) compared to online (49.2 percent).

Given these differences, we explore whether the added value of LMS predictors differs for 
online versus in-person observations. To do so, we calculate separate C-statistics online versus 
in-person subsets of the validation sample. We present these results in Online Appendix Table 
A10. The C-statistics for the online observations closely mirrors the results in Figure 1. However, 
we observe a significant drop in the C-statistic for the LMS-only model for the in-person obser-
vations, equal to 0.647 for the new-student sample and 0.708 for the returning-student sample. 
Interestingly, the in-person C-statistic is higher for admin-only models and is only slightly lower 
for the full predictor models (compared to Figure 1). These results suggest that LMS-only mod-
els are of significantly less value for in-person observations; however, given that the validation 
sample from Spring 2021 contains only 5.6% in-person observations, we caution against drawing 
strong conclusions from this particular comparison.

Because the training set contains a significantly larger share of in-person observations (31.5% 
for returning-student sample and 37.2% for new-student sample), and because the computation 
of feature importance scores are not reliant on the validation sample, we build modality-specific 
models with the full set of predictors and compare the feature importance scores in Online 
Appendix Table A12. We find that the LMS predictors have higher feature importance for the 
online observations compared with the in-person observations. Comparing Panels A and B, 
which show the top 30 predictors for the modality-specific models using the returning-student 
sample, respectively, we see that there are four LMS predictors in the top 10 predictors for online 
observations, but only two LMS predictors in the top 10 for in-person observations. Similarly, 
the top-rated LMS predictor has a ranking of two (i.e., second most important feature) for online 
observations, but a ranking of seven for in-person observations. We find similar patterns when 
comparing Panels C and D, which show the same set of results using the new-student sample.

28 We classify all hybrid courses, which VCCS defines as having 50–99 % of course instruction occurring online, as online 
courses.
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