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ABSTRACT

Early identification of college dropouts can provide tremen-
dous value for improving student success and institutional
effectiveness, and predictive analytics are increasingly used
for this purpose. However, ethical concerns have emerged
about whether including protected attributes in these predic-
tion models discriminates against underrepresented student
groups and exacerbates existing inequities. We examine this is-
sue in the context of a large U.S. research university with both
residential and fully online degree-seeking students. Based
on comprehensive institutional records for the entire student
population across multiple years (N = 93,457), we build ma-
chine learning models to predict student dropout after one aca-
demic year of study and compare the overall performance and
fairness of model predictions with or without four protected
attributes (gender, URM, first-generation student, and high
financial need). We find that including protected attributes
does not impact the overall prediction performance and it only
marginally improves the algorithmic fairness of predictions.
These findings suggest that including protected attributes is
preferable. We offer guidance on how to evaluate the impact
of including protected attributes in a local context, where in-
stitutional stakeholders seek to leverage predictive analytics to
support student success.
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INTRODUCTION

With the rapid development of learning analytics in higher edu-
cation, data-driven instructional and learning support systems
are increasingly adopted in classroom settings, and institution-
level analytics systems are used to optimize resource allocation
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and support student success on a large scale. A common ob-
jective of these systems is the early identification of at-risk
students, especially those likely to drop out of college. This
type of prediction has significant policy implications because
reducing college attrition has been a central task for insti-
tutional stakeholders ever since higher education was made
accessible to the general public [33]. As of 2018, fewer than
two-thirds of college students in the United States graduated
within six years, and this share is even smaller at the least
selective institutions which serve disproportionately more stu-
dents from disadvantaged backgrounds [23]. At the same
time, the supply of academic, student affairs, and administra-
tive personnel is insufficient to provide just-in-time support to
students in need [23]. It is within these resource-strained con-
texts that predicting dropouts based on increasingly digitized
institutional data has the potential to augment the capacity
of professionals who work to support student retention and
success. Starting with the Course Signals project at Purdue
University, an increasing number of early warning systems
have explored this possibility at the institutional level [1, 25,
18, 12].

Accurately forecasting which students are likely to drop out is
essentially profiling students based on a multitude of student
attributes. These attributes often include socio-demographic
information that is routinely studied in higher education re-
search. Although the analysis of historical socio-demographic
gaps in retention and graduation rates is well established in
higher education research [13], it becomes controversial to use
these same characteristics when making predictions about the
future. For example, is it fair to label a black first-year student
as at risk based on the higher dropout rate among black stu-
dents in previous cohorts? The answer may be equivocal [37].
On the one hand, the observed historical gaps capture system-
atic inequalities in the educational environment of different
student groups, which may well apply to future students from
the same groups and therefore contribute to similar gaps. In
this sense, explicitly using socio-demographic data can result
in more accurate predictions and improve the efficiency of
downstream interventions and actions based on those algo-
rithmic decisions [34]. On the other hand, from an ethics
and equity perspective, the inclusion of socio-demographic
variables may lead to discriminatory results if predictive mod-
els systematically assign differential predicted values across
student groups based on the records of their historical coun-
terparts. When these results are used for decision-making,
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stigmas and stereotypes could carry over to future students
and reproduce existing inequalities [26, 4].

In this paper, we investigate the issue of using protected at-
tributes in college dropout prediction in real-world contexts.
Protected attributes are traits or characteristics based on which
discrimination is prescribed as illegal, such as gender, race,
age, religion, and genetic information. We examine students in
aresidential college setting as well as students in fully online
degree programs, which have been increasingly represented in
formal higher education. In Fall 2018, 16.6% of postsecondary
students in the United States were enrolled in exclusively on-
line programs, up from 12.8% in Fall 2012 [35, 38]. The
absence of a residential experience exposes students to addi-
tional challenges to accountability and engagement, and also
makes it harder for faculty and staff members to identify prob-
lems with students’ well-being and provide timely support.
The COVID-19 pandemic has forced most colleges to move
instruction online, which will likely increase the importance
of online learning in the future of higher education [32]. Pre-
dictive analytics are therefore just as useful for online higher
education as they are for residential settings for supporting
student achievement and on-time graduation. Our findings in
both residential and online settings offer practical implications
to a broad range of stakeholders in higher education.

By systematically comparing predictive models with and with-
out protected attributes in two higher education contexts, we
aim to answer the following two research questions:

1. How does the inclusion of protected attributes affect the
overall performance of college dropout prediction?

2. How does the inclusion of protected attributes affect the
fairness of college dropout prediction?

This research contributes to the literature on predictive model-
ing and algorithmic fairness in (higher) education on several
dimensions. First, we present one of the largest and most com-
prehensive evaluation studies of college dropout prediction
based on student data over multiple years from a large public
research university. This offers robust insights to researchers
and institutional stakeholders into how these models work and
where they might go wrong. Second, we apply the prediction
models with the same features to both residential and online
degree settings, which advances our understanding of gener-
alizability across contexts, such as in which environment it is
easier to predict dropout and to what degree key predictors
differ. Third, we contribute some of the first empirical evi-
dence on how the inclusion of protected attributes affects the
fairness of dropout prediction, which can inform equitable
higher education policy around the use of predictive modeling.

RELATED WORK

College Dropout Prediction

Decades of research have charted the ecosystem of higher
education as a complex journey with "a wide path with twists,
turns, detours, roundabouts, and occasional dead ends that
many students encounter” and jointly shape their academic
and career outcomes [28]. Among the variety of factors that
influence students’ journey, background characteristics such
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as demographics, family background, and prior academic his-
tory are strong signals of academic, social, and economic
resources available to a student before adulthood, which are
substantially correlated with college success [11]. For exam-
ple, ethnic minorities, students from low-income families, and
first-generation college students have consistently suffered
higher dropout rates than their counterparts [13, 9], and stu-
dents who belong to more than one of these groups are even
more likely to drop out of college. In addition to these largely
immutable attributes at college entry, students’ experiences
in college such as engagement and performance in academic
activities are major factors for success. In particular, early
course grades are among the best predictors of persistence and
graduation, even after controlling for background characteris-
tics [28].

With the advent of the "datafication" of higher education [36],
there has been an increasing thrust of research to translate the
empirical understanding of dropout risk factors into predictive
models of student dropout (or success) using large-scale ad-
ministrative data [3, 14, 25, 15, 5, 6, 24]. These applications
are usually intended to facilitate targeted student support and
intervention programs, and the extensive research literature on
college success has facilitated feature engineering grounded
in theory. For example, Aulck and colleagues [3] used seven
groups of freshman features extracted from registrar data to
predict outcomes for the entire student population at a large
public university in the US. The model achieved an accuracy of
83.2% for graduation prediction and 95.3% for retention. In a
more application-oriented study as part of the Open Academic
Analytics Initiative (OAAI), Jayaprakash and colleagues [25]
developed an early alert system that incorporated administra-
tive and learning management system data to predict at-risk
students (those who are not in good standing) at a small private
college, and then tested the system at four other less-selective
colleges.

While the recent decade has seen a steady growth in prediction-
focused studies on college dropout, a large proportion of them
are focused on individual courses or a small sample of de-
gree programs [21]. Most of them investigate dropouts at
brick-and-mortar institutions. Our study pushes these research
boundaries by examining dropout prediction for multiple co-
horts of students across residential and exclusively online
degree programs offered by a large public university. The
breath of our sample is rare in the dropout prediction literature
and promises to offer more generalizable insights about the
utility and feasibility of predictive models.

Algorithmic Fairness in Education

A central goal of educational research and practice has been
to close opportunity and achievement gaps between different
groups of students. More recently, algorithmic fairness has
become a topic of interest as an increasing number of students
are exposed to intelligent educational technologies [26]. Inac-
curacies in models might translate into severe consequences
for individual students, such as failing to allocate remedial
resources to struggling learners. It is more concerning if such
inaccuracies disproportionately fall upon students from dis-
advantaged backgrounds and worsen existing inequalities. In
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this context, the fairness of algorithmic systems is generally
evaluated with respect to protected attributes following legal
terms. The specific criteria of fairness, however, vary and
largely depend on the specific application(s) [39].

In the past few years, a handful of papers have brought the
fairness framework to real-world learning analytics research.
Most of these studies audit whether supervised learning mod-
els trained on the entire student population generate systemati-
cally biased predictions of individual outcomes such as correct
answers, test scores, course grades, and graduation [41, 29, 20,
24, 16, 31]. For example, Yu and colleagues [41] found that
models using college-entry characteristics to predict course
grades and GPA tend to predict lower values for underrepre-
sented student groups than their counterparts. Other studies
have examined biases encoded in unsupervised representations
of student writing [2], or go further to refine algorithms for
at-risk student identification under fairness constraints [22].
Overall, this area of research is nascent and in need of sys-
tematic frameworks specific to educational contexts to map an
agenda for future research.

When it comes to strategies to improve algorithmic fairness,
a contentious point is whether protected attributes should be
included as predictors (features) in prediction models. Most
training data from the real world are the result of historical
prejudices against certain protected groups, so directly using
group indicators to predict outcomes risks imposing unfair
stereotypes and reproduce existing inequalities [4]. In educa-
tional settings, it may be considered unethical to label students
from certain groups as "at risk" from day one, when in fact,
these students have demonstrated an exceptional ability to
overcome historical obstacles and might therefore be more
likely to succeed [37]. This concern motivated the research
effort to “blind” prediction models by simply removing pro-
tected attributes (i.e. fairness through unawareness) or more
complicated statistical techniques to disentangle signals of
protected attributes from other features due to their inherent
correlation [8]. In contrast, recent work has advocated for
explicitly using protected attributes in predictive models (i.e.
fairness through awareness) [17]. In particular, Kleinberg and
colleagues [27] showed in a synthetic example of college ad-
mission that the inclusion of race as a predictor of college
success improves the fairness of admission decisions without
sacrificing efficiency. Given the well-documented relationship
between student background and their educational outcomes,
a recent review also suggests that predictive models in edu-
cation should include demographic variables to ensure that
algorithms are value-aligned, i.e., all students have their needs
met [34].

To our knowledge, however, there is only limited empirical
evidence to support either side of this debate. Our study there-
fore presents an in-depth examination of the consequences
of including or excluding protected attributes on algorithmic
fairness of a realistic, large-scale dropout prediction model.
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METHODOLOGY

Dataset

We analyze de-identified institutional records from one of the
largest public universities in the United States. This broad-
access research university serves nearly 150,000 students with
an 86% acceptance rate and 67% graduation rate. Its student
population is representative of the state in which it is located,
which makes it a Hispanic-serving institution (HSI). The uni-
versity has offered many of the same undergraduate degree pro-
grams fully online to over 40,000 students. The dataset we use
in this study focuses on undergraduate students and contains
student-level characteristics and student-course-level records
for their first term of enrollment at the university, including
transfer students (except for those who transfer into their se-
nior year). For our prediction task, we only keep students
whose first term was in the Fall along with their course-taking
records in their first term, including terms between 2012-18
(residential) and 2014-18 (online).

This sample comprises a total of 564,104 residential course-
taking records for 93,457 unique students and 2,877 unique
courses, and 81,858 online course-taking records for 24,198
unique students and 874 unique courses. The course-taking
records include both a student’s letter grade and course-level
metadata (subject, course number, units, required for major,
etc.). Student-level information includes socio-demographic
information (age, gender, race/ethnicity, first-generation status,
etc.), prior academic achievement (high school GPA, standard-
ized test scores), enrollment information (transfer student sta-
tus, part-time status, academic major and minor, etc.). These
data are representative of what most higher education institu-
tions routinely manage in their student information systems
(SIS) [3].

Prediction Target and Feature Engineering

The primary goal of a dropout prediction model is to alert
relevant stakeholders to currently enrolled students who are
at risk of dropping out of a degree program so that they can
reach out and offer support at an early stage. While the general
framework of dropout prediction is well established, the exact
definition of dropout, or attrition, varies based on the specific
context [33]. In our context, we define dropout as not returning
to school a year from the first time of enrollment. We only
analyze students who first enrolled in Fall, so dropout means
not returning in the following Fall. This final operationaliza-
tion aligns well with retention, one of the two standard metrics
of post-secondary student success in national reports of the
United States [38, 23].!

We use students’ background characteristics and academic
records in the first enrolled term (Fall) to predict dropout, be-
cause it would be beneficial to identify risks as early as possi-
ble and institutional records are usually updated and available
at the end of each term. Informed by existing research in
higher education and learning analytics (see Related Work),

I'The other standard metric is graduation within 100% or 150% of
the normative time (i.e. 4 or 6 years for four-year institutions). We
do not examine this metric because the span of our dataset is only
six years and we do not observe graduation outcomes for all student
cohorts.
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Table 1. Features used for dropout prediction.

Category Features

Protected attributes

Gender (binary), first-generation college student (binary), underrepresented minority (URM;

binary; defined as not Asian or White), high financial need (binary; FASFA-based expected
family contribution under $5,500)

Incoming attributes

ferred credits, transfer GPA
Program information
Course performance

Age, high school GPA, math and verbal SAT/ACT scores, transfer student (binary), trans-

Part-time student (binary), major, minor, STEM major (binary)
Total courses enrolled, total units enrolled, percentage of courses that are required, credits

received from different types of courses (lecture, seminar, etc.), levels of courses (100, 200,
etc.), term GPA, mean and variance in course grades within each session during the term,
percentage distribution of letter grades

we construct 58 features from the dataset for both residential
and online students. Table 1 summarizes these feature by four
categories. We include four protected attributes, which are the
most commonly used dimensions along which to examine edu-
cational inequalities and set equity goals in policy contexts [9,
10, 23].

Table 2 depicts the student profile in our analysis. The statistics
reaffirm that, regardless of format, the institution serves a large
proportion of students from historically disadvantaged groups.
There are also major differences across formats. In line with
the national statistics of exclusively online programs [38], the
online sample has a higher concentration of transfer and non-
traditional (older, part-time) students, and also higher dropout
rates compared to residential students. These characteristics
validate that the current analysis is performed on student popu-
lations who are most in need of institutional support and allow
us to scrutinize the generalizability of our findings across two
distinct contexts of higher education.

Table 2. Comparison of online and residential student populations.

Online Residential

N 24,198 93,457
Dropout 40.7% 16.9%
Female 60.9% 47.9%
First-gen 42.4% 33.6%
URM 33.1% 34.6%
High need 61.9% 51.3%
Transfer 85.2% 31.8%
Part-time 77.2% 12.9%
Average age  27.1 19.7

Dropout Prediction

To investigate the consequences of using protected attributes
in dropout prediction models, we generate two feature sets:
the AWARE set includes all features shown in Table 1, while
the BLIND set excludes the four protected attributes from
the AWARE set. For convenience, we will refer to a specific
model by the feature set it uses in the remainder of this paper.
Given our binary target variable, the dropout prediction task
is formalized as a binary classification problem. As we focus
on identifying the effect of including protected attributes, we
experiment with two commonly used algorithms — logistic
regression (LR) and gradient boosted trees (GBT). We choose
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LR because it is a linear additive and highly interpretable
classifier that can achieve reasonable prediction performance
with well-chosen features. The choice of GBT, on the other
hand, is for its ability to accommodate a large number of
features, efficiently handle missing values, and automatically
capture non-linear interactions between features.

We predict dropping out separately for online and residential
students. For each format, we split the data into a training
set and a test set based on student cohort: the last observed
cohort (6,939 online and 14,275 residential students entering
in Fall 2018) constitutes the test set and the remaining cohorts
make up the training set (17,259 online and 79,182 residential
students). There are two reasons for doing the train-test split
by student cohorts. Practically, this split aligns with the real-
world application where stakeholders rely on historical data to
make predictions for current students [25]. Technically, this
approach alleviates the issue of data contamination between
the training and test set [19], as the features we use, especially
the first-semester records, might be highly correlated within
the same cohort but much less so across cohorts.

There are a few additional technical details about model train-
ing. First, we tune hyperparameters of the two algorithms by
performing grid search over a specified search space and eval-
uating the hyperparameters using 5-fold cross-validation. Sec-
ond, we add indicator variables for missing values in course
grades, standardized test scores, and academic majors and
minors. Third, we apply robust scaling to training features to
regulate the influence of outliers. Fourth, because the class
imbalance in both datasets can bias the model learning towards
the majority class (i.e. non-dropout), we adjust the sample
weights to be inversely proportional to class frequencies during
the training stage.

The trained classifiers are then applied to the test set to evaluate
the performance. The immediate output of each classifier is
a predicted probability of dropping out for each student. To
make a final binary prediction of dropout, we use dropout rates
in the training data to determine the decision thresholds for
the test set, such that the proportion of predicted dropouts in
the test set matches the proportion of observed dropouts in the
training set [6]. Compared to the default of 0.5, this choice of
threshold is more reasonable when we rely on the observed
history to predict the unknown future in practice.
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Table 3. Overall prediction performance of AWARE and BLIND models
trained with gradient boosted trees (GBT) and logistic regression (LR).

GBT LR

Metric AWARE BLIND A AWARE BLIND A
Online (Non-dropout: 59.3%)

Accuracy 75.8 75.6 0.2 75.2 75.4 -0.2
Recall 67.3 67.1 0.2 66.7 66.8 -0.1
TNR 82.4 823 0.1 81.9 82.0 -0.1
Residential (Non-dropout: 83.1%)

Accuracy 83.9 83.9 0.0 83.6 83.6 0.0
Recall 54.1 54.1 0.0 532 533 -0.1
TNR 89.1 89.1 0.0 88.9 88.9 0.0

Note: none of the A values is statistically significant with p < 0.1.

Performance Evaluation

We evaluate prediction performance based on three metrics:
accuracy, recall, and true negative rate (TNR). In the context of
dropout prediction, recall is the proportion of actual dropouts
who are correctly identified, whereas TNR quantifies how
likely a student who persists into the second year of college
is predicted to persist. To examine the effects of including
protected attributes on overall performance, we compute these
metrics separately for each model and test whether each metric
significantly changes from BLIND to AWARE models, using
two proportion z-tests.

We operationalize fairness as the independence between pre-
diction performance, measured by the three metrics above,
and protected group membership. This definition of fairness
with respect to the three metrics corresponds to the established
notions of overall accuracy equality, equal opportunity, and
predictive equality, respectively [26]. Specifically, to quantify
the fairness of a given model with regard to a binary protected
attribute, such as URM, we compute the differences in each of
the three metrics between the two associated protected groups,
URM and non-URM students. We then compare how much
these differences change between BLIND and AWARE models
in order to quantify the effect of including protected attributes
as predictors on fairness.

RESULTS

Overall Prediction Performance

We first illustrate the effects of including protected attributes
on overall prediction performance. Table 3 reports the overall
performance of AWARE and BLIND models, trained with
GBT and LR algorithms, on the test dataset. The last column
under each algorithm reports the percentage point differences
in performance between the two models (from BLIND to
AWARE). The main finding is that including or excluding
protected attributes does affect the performance of the dropout
prediction in either context. None of the performance met-
rics (accuracy, recall, TNR) differs significantly between the
BLIND and AWARE models. Additionally, while the more
sophisticated GBT algorithm performs better than the simple
LR on all metrics, the advantage is comparatively small (less
than one percentage point on all metrics). Because of this, we
restrict the following analysis to GBT-based models.

Compared to a naive baseline which simply predicts every
student to be the majority class (non-dropout) and achieves an
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accuracy equal to that majority’s share, the predictive models
can accurately predict online dropouts with a decent mar-
gin. However, the accuracy margin for predicting residential
dropouts is fairly small. The other two metrics, which describe
the accuracy among dropouts and non-dropouts respectively,
achieve a higher value when the corresponding group has a
larger share and vice versa. Specifically, the models are able
to identify 67.3% of online dropouts and 54.1% of residential
dropouts. This latter value is somewhat lower but still compa-
rable to the recall performance in recent prior work on dropout
prediction in residential programs [6, 15].

To take a closer look at the model predictions, beyond the
three aggregate performance metrics, we examine whether in-
cluding protected attributes alters the distribution of predicted
dropout probabilities. As shown in Figure 1, the distributions
are highly similar across the models which further validates
the limited marginal impact of protected attributes. An addi-
tional insight from these plots is that dropouts might be much
more heterogeneous than non-dropouts in terms of the features
in Table 1, as their predicted probabilities are highly spread
out, especially in residential settings where the majority of
dropouts are assigned a small dropout probability. This pat-
tern is consistent with the lower recall performance shown in
Table 3.

This finding appears to conflict with prior research that demon-
strates the critical role of demographic and background char-
acteristics for student success in higher education [28]. In an
effort to better understand our result, we explore two mutually
compatible hypotheses inspired by the algorithmic fairness
literature. One hypothesis is that dropping out, the prediction
target, is not sufficiently correlated with protected attributes,
and thus adding the latter to a dropout prediction model would
not improve performance much. To test this, we fit separately
for each enrollment format in the test data a logistic regression
model that predicts dropout using all the possible interaction
terms between the four protected attributes. We find that, even
though a few coefficients are statistically significant, the ad-
justed McFadden’s R? is as small as 0.006 for either format,
lending support to our hypothesis.

The second hypothesis is that protected attributes are already
implicitly encoded in the BLIND feature set, and adding them
directly does not add much predictive power. We test this
by fitting four logistic regressions for each format which use
the BLIND feature set to predict each of the four protected
attributes. Based on the adjusted McFadden’s RZ, we find that
only gender can plausibly be considered encoded in the other
features (0.159 for online and 0.187 for residential). This lends
partial support to our second hypothesis.

Fairness of Prediction

We further examine how the inclusion of protected attributes
might affect the fairness of dropout predictions. As men-
tioned in the previous section, for each of the four protected
attributes, we first measure fairness by the group difference
in a chosen performance metric. For example, a prediction
model that achieves the same accuracy on male and female
students is considered fair in terms of accuracy (0% differ-
ence). Following this construction, Figure 2 visualizes these
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Figure 2. Fairness of AWARE and BLIND models in terms of accuracy (left), recall (middle), and TNR (right). Positive group differences (y-axis)
indicate higher values for the listed groups compared to their corresponding reference groups. Group differences closer to zero reflect higher levels of

fairness. Error bars indicate 95% confidence intervals.

fairness results of the AWARE and BLIND models for each
of the four protected attributes in terms of the three metrics.
Each bar in a subplot depicts the difference in that metric
between the labeled group and their counterpart (e.g., male -
female). The closer the bar is to zero, the fairer that model
prediction is. Overall, the figure shows that both the AWARE
and BLIND models are unfair for some protected attributes
and some metrics, but fair for others. This lack of universal
fairness is expected given the many dimensions of protected
attributes, models, and metrics. However, for residential stu-
dents, the model consistently exhibits unfairness across all
protected attributes and metrics, especially in terms of recall.
The inclusion or exclusion of protected attributes does not
in general lead to different levels of fairness in terms of any
metric in any enrollment format, as all adjacent error bars in
the figure exhibit a high degree of overlap.

While the aggregated group fairness metrics do not differ with
vs. without protected attributes, we take a step further to
explore how individual-level changes in model predictions
can shed light on the overall change in fairness. We examine
changes in the individual ranking of predicted dropout proba-
bility among all predicted students (test set) from BLIND to
AWARE model. Figure 3 plots the distribution of this rank-
ing change for each protected group, where higher values
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represent moving up in the assigned risk leaderboard when
protected attributes are included for prediction.

We find that overall the ranking change is centered around
zero, but there are observable group differences in certain
cases. In the online setting, the AWARE model tends to move
up females and students without a high financial need on the
dropout risk leaderboard simply based on their identity. Sim-
ilarly, continuing-generation college students are moved up
more in residential settings compared to their first-generation
counterparts. We argue that these group differences suggest
improved fairness if the group going up more in the ranking
spectrum has lower dropout rates in reality, and vice versa. To
formally evaluate this reasoning, we conduct a series of ¢-tests
between pairs of protected groups on their ranking change. We
also compute Cohen’s d to gauge the standardized effect size.
Comparing Table 5 which describes these results and Table 4
which presents the actual dropout rates of each group, we find
that moving from BLIND to AWARE causes students from
advantaged (lower dropout rates) groups to be assigned rela-
tively higher risk rankings compared to their disadvantaged
(higher dropout rates) reference groups, and that this effect
size is larger when the two paired groups have larger gaps in
dropout rates. Thus, adding protected attributes to the model is
working against existing inequities to a marginal extent instead
of reinforcing them.



L@Scale 2: Perspectives from US West Coast

L@S'21, June 22-25, 2021, Virtual Event, Germany

Online Residential
Gender [ F [ M URM [] o [ 1 Gender [ ] F [ M URM [] o ] 1
0.0031 0,003 ' 0.004 0.0041 .
l 0.0031
20.0021 20.0021 20'003 i = E
§ é § 0.002 ! § 0.0021 !
0.001 1 J i )
0.001 0.001 : 0.001 1 '
1 1
0.0004; . , . : 0.0004; : , : : 0.000; : ; . : 0.0004; : , : :
-1000 -500 0 500 1000 -1000 -500 0 500 1000 -1000 -500 0 500 1000 -1000 -500 0 500 1000
Change in Ranking Change in Ranking Change in Ranking Change in Ranking
First Gen [_] 0 [ 1 High Need [_] 0 [ 1 First Gen [_] 0 [O] 1 High Need [_] 0 ] 1
0.003+ . : ]
0.003 { 0.004 1 0.004
> 0.0021 > -.0.003 1 >‘0.003- :
£ £ 0.002 1 £ £ i
5 @ $ 0.0021 ' £ 0.0021 '
8 0.0011 a 8- : 3 0
: 0.0011 0.0014 ) 0.0011 :
1 1
0.000; : , : , 0.0004; : , . . 0.0004; : ; . , 0.0004; : " : :
-1000 -500 0 500 1000 -1000 -500 0 500 1000 -1000 -500 0 500 1000 -1000 -500 0 500 1000

Change in Ranking Change in Ranking

Change in Ranking Change in Ranking

Figure 3. Distribution of change in individual ranking of predicted dropout probability from AWARE to BLIND. One unit increase means going up by

one place in the AWARE model compared to the BLIND model.

Table 4. Dropout rates among different protected groups in the test set.

Dropout rate

Online Residential
Overall 40.7 16.9
Male 49.5 15.6
Female 40.7 14.0
URM 46.6 16.8
Non-URM 42.4 13.7
First-gen 43.7 17.9
Continuing-gen  44.1 13.5
High need 45.8 17.0
Low need 40.5 12.8

DISCUSSION AND CONCLUSION

We set out to answer a simple question: Should protected
attributes be included in college dropout prediction models?
This study offers a comprehensive empirical examination of
how the inclusion of protected attributes affects the overall
performance and fairness of a realistic predictive model. We
demonstrate this finding across two large samples of residen-
tial and online undergraduate students enrolled at one of the
largest public universities in the United States. Our findings
show that including four important protected attributes (gen-
der, URM, first-generation student, high financial need) does
not have any significant effect on three common measures
of overall prediction performance when commonly used fea-
tures (incoming attributes, enrollment information, academic
records) are already in the model. Even when used alone
without those features, the group indicators defined by the
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Table 5. Welch two-sample t-test results and Cohen’s d effect size of
individual ranking change. Positive ranking change means increased
predicted dropout risks from BLIND to AWARE model.

Group (Avg. ranking change) Rank A Cohen’s d
Online

Female (50.5) Male (-88.4) 138.9%#:* 0.71
Non-URM (0.5) URM (-0.9) 1.4 0.01
Continuing-gen (-13.9)  First-gen (18.6) -32.5%%* 0.16
Low need (104.5) High need (-60.0)  164.5%** 0.87
Residential

Female (15.9) Male (-15.1) 31.0%** 0.13
Non-URM (13.0) URM (-22.8) 35.8%%* 0.15
Continuing-gen (27.2) First-gen (-62.1) 89.3%*:* 0.38
Low need (6.8) High need (-7.0) 13.8%#* 0.06

Significance levels: *** p<0.001; ** p<0.005; * p<0.01

protected attributes are not highly predictive of dropout, al-
though the actual dropout rates are somewhat higher among
minoritized groups. In terms of fairness, we find that including
protected attributes only leads to a marginal improvement in
fairness by assigning dropout risk scores with smaller gaps be-
tween minority and majority groups. However, this trend is not
sufficiently large to systematically change the final dropout
predictions based on the risk scores, and therefore the for-
mal fairness measures are not significantly different between
models with and without protected attributes.

In short, our results suggest limited effects of including pro-
tected attributes on the performance of college dropout predic-
tion. This does not point to a clear answer to our normative
question and prompts us to further reflect on the focal issue
of using protected attributes. Recent work in the broader
machine learning community has been in favor of “fairness
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through awareness” [17], and has specifically suggested that
race-aware models are fairer for student success prediction
because they allow the influence of certain features to differ
across racial groups [27]. Our findings resonate with these
existing studies around fairness but only to a marginal ex-
tent. Notably, student groups with historically higher dropout
rates are slightly compensated by being ranked lower in pre-
dicted dropout risks when protected attributes are used. This
compensating effect, however, does not accumulate to statisti-
cally significant changes in predicted labels, possibly because
the group differences in dropout rates were not sizeable in
the past at the institution we study (see Table 4). In other
words, protected attributes might have more to contribute to
the fairness of prediction in the presence of substantial exist-
ing inequalities. Still, the existence of a weak compensating
instead of segregating effect justifies the inclusion of these
attributes. After all, a major argument for race-aware models,
and more generally socio-demographic-aware models, is to
capture structural inequalities in society that disproportion-
ately expose members of minoritized groups to more adverse
conditions. In addition, the deliberate exclusion of protected
attributes from dropout prediction models can be construed as
subscribing to a “colorblind” ideology, which has been crit-
icized as a racist approach that serves to maintain the status
quo [7].

Another contribution of this work lies in our approach to fair-
ness evaluation. The analyses and visualizations we present
are the result of many iterations to arrive at simple yet com-
pelling ways to communicate fairness at different levels of
aggregation and across many protected attributes. These meth-
ods can be used by those who seek to evaluate model fairness
for research and practice. Prior research has mostly focused
on evaluating one protected attribute at a time, but in most
real-world applications we care about more than one protected
attribute. We recommend comparing AWARE against BLIND
models in terms of the individual ranking differences by group
(Figure 3) as well as the group difference plots for multiple
performance metrics and protected attributes (Figure 2). This
approach offers a sensitive instrument for diagnosing fairness-
related issues in various domains of application, which could
easily be implemented in a fairness dashboard that evaluates
multiple protected attributes, models, and performance met-
rics [40]. This will remain a promising line of our future
work.

This research has broader implications for using predictive
analytics in higher education beyond its contributions to algo-
rithmic fairness. With a common set of institutional features,
we achieve 76% prediction accuracy and 67% recall on unseen
students in online settings, that is, correctly identifying 67%
of actual dropouts with their first-term records. For residential
students, we achieve a higher accuracy of 84% but a lower
recall of 54%. These performance metrics may seem some-
what lower than in prior studies of dropout prediction, but
this might be because most existing studies examine a smaller
sample of more homogeneous students, such as students in
the same cohort or program [15, 14]. This highlights the gen-
eral challenge of predicting college dropout accurately. As
suggested by the large variance in predicted probabilities for
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dropouts (Figure 1), widely used institutional features might
not perform well in capturing common signals of dropout.
This may point to important contextual factors that our insti-
tutional practices are presently overlooking. We view this as
a limitation and important next step that will require both an
interrogation of the theoretical basis for predictors and close
collaboration with practitioners.

Further directions for future research in this area include ex-
ploring counterfactual notions of fairness in this context by
testing how predictions would differ for counterfactual pro-
tected attributes, all else being equal. This would benefit
the contemporary education system which relies increasingly
on research that provides causal evidence. We would also
like to move from auditing to problem-solving by evaluating
correction methods for any pre-existing unfairness in predic-
tions to see how the AWARE relative to the BLIND model re-
sponds [30]. We hope that this study inspires more researchers
in the learning analytics and educational data mining commu-
nities to engage with issues of algorithmic bias and fairness in
the models and systems they develop and evaluate.
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