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ABSTRACT
Large-scale administrative data is a common input in early warning
systems for college dropout in higher education. Still, the termi-
nology and methodology vary significantly across existing studies,
and the implications of different modeling decisions are not fully
understood. This study provides a systematic evaluation of con-
tributing factors and predictive performance of machine learning
models over time and across different student groups. Drawing on
twelve years of administrative data at a large public university in
the US, we find that dropout prediction at the end of the second
year has a 20% higher AUC than at the time of enrollment in a
Random Forest model. Also, most predictive factors at the time of
enrollment, including demographics and high school performance,
are quickly superseded in predictive importance by college per-
formance and in later stages by enrollment behavior. Regarding
variability across student groups, college GPA has more predictive
value for students from traditionally disadvantaged backgrounds
than their peers. These results can help researchers and adminis-
trators understand the comparative value of different data sources
when building early warning systems and optimizing decisions
under specific policy goals.
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1 INTRODUCTION
Preventing college dropout is a long-lasting goal of modern post-
secondary education institutions [22]. Succeeding Tinto’s ground-
breaking theory of academic integration [55], large-scale admin-
istrative data and machine learning (ML) algorithms have been
leveraged to build early warning systems (EWS) for student attri-
tion in the recent decade [24]. However, the definition and nature of
college dropout can vary significantly across institutional contexts,
student populations, and application scenarios. Therefore, the full
potential of early warning algorithms has yet to be systematically
evaluated. Modeling decisions regarding the time of prediction and
potentially different dropout mechanisms across student subgroups
have to be better understood to build robust and reliable prediction
systems.

This study aims to bridge the understanding of the complex
dynamics of student dropout factors and real-world applications
of college dropout models. Our analyses focus on the relevance of
individual predictors and potential group differences, such as gender
or other traditionally underrepresented groups, for dropout risks.
We integrate the temporal dimension of the dropout prediction
problem by comparing different time points at which dropout can
be predicted. We target both further hypothesis-driven research
and the construction of early warning systems (EWS) by answering
the following research questions (RQs):
RQ1: How well do college dropout prediction models perform

when utilizing only administrative data, and which predic-
tors within these models are the most important?

RQ2: How do the predictability and relevance of predictors of
college dropout temporally change throughout enrollment?

RQ3: How do the predictability and relevance of predictors of col-
lege dropout vary between different student populations
(i.e., underrepresented minorities, low-income-family, fe-
male, STEM, first-generation college students)?
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2 RELATEDWORK
2.1 Definition of College Dropout
The opposite of academic success, i.e., no graduation or the ab-
sence of course grades in a given period, generally defines dropout
[7, 30]. Academic success has been measured by time to degree,
time of absence, or graduation [9, 13]. Therefore, the following
dimensions appear most helpful in defining dropout: retention,
non-completion of the degree program, and elapsed time. Retention
refers to whether a student reports back at the beginning of the
term [7]. Non-completion refers to students not returning and at
the same time not having completed the program [11]. Elapsed
time refers to the number of consecutive terms students were not
enrolled in coursework [52]. Using these principles, we consider "a
student that has not taken any courses at the university for at least
four consecutive terms and has not completed the degree program”
as dropout.

2.2 Predictors of College Dropout
2.2.1 Administrative Data. This data source refers to the informa-
tion collected by the institution at the onset of and throughout a
student’s college trajectory [24]. It includes variables such as demo-
graphics (e.g., ethnicity, income status, first-generation status), aca-
demic performance measures (e.g., high school grade point average,
scholastic aptitude test scores), and course-level outcome data (e.g.,
final grades). High school grade point average (GPA) and entrance
test scores are mainstay predictors in most educational studies
investigating college dropout [7–9, 16, 30, 39, 43, 46]. Similarly, de-
mographic characteristics such as age, ethnicity, gender, and socio-
economic status predict student dropout [7, 9, 16, 28, 30, 39, 40, 43].
However, some studies indicate significant contributions to dropout
predictions [9, 30, 39, 41, 48], whereas other studies fail to replicate
such findings [31, 43, 59]. More work is needed to understand how
various demographic characteristics predict students’ academic
success.

2.2.2 Alternative predictors. Surveys add various motivational be-
lief constructs, such as academic self-efficacy, values, and motiva-
tion, to the traditional predictors [18, 19, 28, 30, 38]. However, the
degree to which these attributes improve dropout predictions is de-
bated, with modest improvements reported in prior work [22]. The
cost of this type of data and low response rates to non-obligatory
student surveys (e.g., 9% in [50]) led us to omit survey data in our
prediction models. A growing set of predictors is derived from
learning management systems to predict students’ engagement
[10, 32]. Clickstream data refers to time-stamped records of stu-
dent interactions triggered by the use of digital course material
[47, 49]. Clickstream-based measures, such as idle time, number
of keystrokes, and frequency of clicks within a particular page of
the online learning environment indicate students’ engagement
[23]. Unfortunately, the heterogeneity of these environments and
course-dependent use cases make this type of data hardly available
for administrators as an off-the-shelf predictor in ready-to-scale
prediction models.

2.3 Prior early warning systems
In recent years, the described data sources have been used for EWSs
to improve educational practice. Early examples of such uses in-
clude Arnold and Pistilli’s study [5], which leveraged demographic,
learning-management-system, and previous academic records to
identify students at risk of not being retained in courses. Similarly,
Brown et al. [12] utilized standardized test scores, course infor-
mation, and demographics to implement early warnings for the
performance of students enrolled in general education programs.
More recent studies have branched towards additional data sources.
A model that added formative assessments and online activity to
predict final grade outcomes supplied approximately a 94% accu-
racy rate by week 6 [33]. More recently, used E-book log data and
Wifi connections served to predict the risk of course failure [1, 60].
Our approach has the potential to achieve similar predictiveness
by incorporating only a cheap subset of these rich data sources. It
can create a non-perfect but easy-to-implement first-level detection
system that can indicate which at-risk students need more careful
examination.

2.4 Temporal dimension and subpopulations
Dropout is often predicted only at one single point, such as the
time of initial enrollment [7], end of the first term [15, 44], or end of
the first year [7, 8]. Different prediction time points were typically
only spread across one term to make course-related predictions
[1, 46, 60]. Only a few studies predict at times ranging from initial
enrollment until the end of the second year [29], and a single one
reported the change of predictor importance for one of their models
[9]. Apart from that, changes in college dropout factors have been
only tracked over cohorts [54]. This change of predictor importance
between two or more time points within a student’s trajectory was
only systematically tracked for high school dropout [25] or within
a survival analysis of college dropout focused on the time point of
dropout [36]. Therefore, we emphasize a systematic comparison
between time points in this study concerning the prediction quality
and data sources.

Group-specific dropout factors were previously only modeled
in classical statistical models (regressions and structural equation
modeling) [4, 53]. To the best of our knowledge, no prior work using
ML methods has focused on group-specific college dropout predic-
tors. We could identify almost no studies that reported the change
in importance of these predictors on the between-group dimension.
Only one study reported how factors may vary between public and
private institutions [9]. We see this as a chance to combine the
strength of ML methods with traditional interaction analyses (see
Section 3.2).

3 METHOD
3.1 Study Setting and Sample
This study is conducted at the University of California, Irvine, a
large public research university in Southern California, that en-
rolls more than 25,000 undergraduate students. This university
features a diverse undergraduate student body and received federal
designations as a Hispanic-Serving Institution (HSI) and an Asian
American and Native American Pacific Islander-Serving Institution
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(AANAPISI). Data for this study were provided from a multitude of
services that collect and curate institutional data, including Admis-
sions, the Registrar’s Office, the Office of Institutional Research, the
Office of Information Technology, and the Office of Financial Aid
and Scholarships. Notably, this study is tied to a large institution-
wide measurement project to understand the value of undergradu-
ate educational experiences and promote evidence-based models of
undergraduate student success trajectories [6]. The investigation
uses data from six cohorts of degree-seeking non-transfer students
(2011-2016 entrance dates) to capture both four- and six-year grad-
uation rates. This led to a total sample size of 33,133 students, with
records of 367,761 terms and 1,466,260 course enrollments, spanning
twelve years of data.

3.2 Research Design
To answer RQ1 and identify the best model, we evaluate all models’
ability to predict dropout after one and two years of the initial
enrollment. Based on typical dropout, we select two observation
spans to account for dynamic relations between predictors and
dropouts over time. RQ2 and RQ3 are computed based on the best-
performing model from RQ1.

RQ2 analyzes the temporal dynamics of the dropout process. Ten
subsets of the data span periods of up to the first three years of
study (three terms per year). Starting from information available
at the moment of the first enrollment, data obtained later than 𝑛

terms after enrollment is discarded for 𝑛 ∈ {0, 1, ..., 9}. Students
already known to have dropped out are excluded from later subsets.
For each observation span, the relative importance of predictors
is identified to track their changes over time. For time points later
than this, models were not analyzed anymore due to the very low
base rate of dropout by then.

RQ3 is structurally analogous to RQ2 but aims to identify dif-
ferences between subgroups of students. We choose the attributes
female, first-generation student, low-income family, underrepresented
minority, and STEM major (students in science, technology, en-
gineering, and mathematics degrees) for the comparison of pre-
dictability and predictor relevance as they are often of particular
interest for college administrators. The main analysis is conducted
for a respective observation span of three terms, but a robustness
analysis has been carried out for observation spans of two and four
terms (see supplementary material1).

3.3 Data
3.3.1 Outcome. Dropouts are identified according to our dropout
definition (see Section 2.1) and marked as such if students show at
least four consecutive terms of no re-enrollment and were never re-
ported to graduate. This leads to a prospective dropout rate of 13.2%
after the first year and 11.4% after the second year. The descriptive
statistics of all predictors and the conditional dropout rates can be
found in the supplementary material.

3.3.2 Pre-entry predictors. Demographic data is usually available
at the time of admission and remains invariant. Gender is simpli-
fied to a binary variable of whether a student is female. The age

1https://github.com/dominikglandorf/college-dropout-prediction

at enrollment is derived from the date of birth. International stu-
dents are annotated with the additional information if they took
the TOEFL. The ethnicity is captured as "Asian / Asian American",
"Black", "Hispanic", "Indigenous", or "White non-Hispanic". For RQ3,
"Black", "Hispanic", and "Indigenous" are summarized to the binary
label underrepresented minority, following a standard definition [21].
The citizenship is indicated as "US Citizen", "Permanent Resident",
and "Not US Citizen". On the geographic scale, the residency within
the state at the time of application is known as "In-State", "Bona
Fide", and "Out-of-State". The geographical category contains more
specific categorical information about residency before enrollment:
"Foreign Country", "Out-of-State", "Northern California", "South-
ern California", and "University County". The university’s distance
from home is enquired at the same point. Students within the first
generation of their family to study and students from a low income
family are flagged. The parents’ education is indicated per parent
with the categories "No high school", "Some high school", "High
school graduate", "Some college", "2 year college grad", "4 year col-
lege grad", and "Postgraduate study". The household size at the time
of admission is registered as the number of members, capped at a
maximum of six. A binary variable indicates whether a student is a
single parent. Lastly, it is stated if a student is an English language
learner (i.e., non-native speaker).

Performance data collected prior to the studies contain the high
school GPA as well as the math, writing, and reading entry test score.
The best score in Advanced Placement (AP) exams is used when
available; otherwise, it is set to 0. The resulting year of study in
the first term ("Freshman", "Sophomore", "Junior/Senior") is also
recorded.

3.3.3 Post-entry predictors. Stemming from term-level informa-
tion, the data contains the current number of declared majors with
the corresponding number of school affiliations. The primarily af-
filiated school and major were indicated as a categorical variable.
The number of changes of major, school, and total enrolled terms
are respectively derived from multiple term records. Note that our
definition of the outcome only considers students as dropouts as
soon as they have not re-enrolled for four consecutive terms. A
binary flag indicates whether a student was declared as honors for
at least three terms and if at least one of their majors is a STEM
major. Predictors also include the average number of courses taken
per term and the current year of study.

On the course level, both demographic and performance data are
captured. The number of credits, if the course has been passed, and
the numeric final grade indicate the performance. The number of
total students and the relative amount of students of the same gender,
first-generation status, and ethnicity are captured as demographic
indicators. All numeric information is first aggregated per term and
then incorporated into cumulative averages up to the time point
of prediction. The linear change in the number of credits from the
first to the current term is also calculated. Another statistic is the
number of credits relative to the major’s average, and whether taken
courses were offered by a school of one of the majors.

3.4 Modeling
A range of binary classification models is used in dropout predic-
tion tasks [1, 7, 9, 11, 17, 28, 43, 51, 58]. We trained them on all
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predictors except the declared major as it shows redundancy with
the school variable and would introduce too many variables. The lo-
gistic regression, which assumes a linear relation between predictors
and logarithmic odds of the outcome, is widely used. Besides being
relatively simple to apply, it usually provides accurate predictions
[23]. The used ML methods include random forests (RF), which are
based on decision trees. Each tree recursively splits the data into
two subsets based on the feature out of a random feature selection
of a specified size that yields the best class impurity until the tree is
grown to a specified size. An RF is assembled of a specified number
of decision trees trained on different subsets of the training set. The
predictions are averaged to make a robust prediction that maintains
the quality of the individual trees. We use the R implementation in
the package randomForest [42].

The support vector machine (SVM) chooses the position of a
hyperplane in a multidimensional space, optimizing the class sep-
aration and the margin to their data points, incurring a certain
cost on violations. Non-linear kernels that transform the input data
into high-dimensional spaces often perform best. Performance also
depends on regularization for the decision boundary (cost) and
class weights. In the case of radial basis functions as a kernel, one
must additionally specify the radius of influence (gamma). We use
the implementation in the R package e1071 [45]. The naive Bayes
classifier assumes an independent effect of categorical predictors
on the outcome. Hence, it predicts its joint probability based on
the observed class frequencies. Therefore, continuous predictors
are discretized. The classifier can integrate a regularization value
to generalize better to joint probabilities unobserved in the train-
ing data (Laplace parameter). We use the implementation in the R
package e1071 [45].

k-nearest neighbors identifies the k closest instances in terms of
the Euclidean distance and predicts class membership based on the
majority class within the neighborhood. Categorical predictors have
to be dummy-coded for this purpose. We use the implementation in
the R package class [57]. Feed-forward neural networks model non-
linear functions by hierarchically applying linear transformations
and non-linear activation functions to the input predictors. The
two output neurons representing the two classes are normalized to
probabilities using the softmax function. The error function is the
binary cross-entropy loss, which is used to train the model weights
and biases via backpropagation. We use the R interfaces to Keras
[2] and TensorFlow [3] using Python 3.10.

3.4.1 Missing data imputation and hyperparameter tuning. Many
predictive models require complete data. Due to the amount of
missing data in some predictors, we prefer data imputation over
keeping only complete data points. Creatingmultiple imputations to
reflect the uncertainty in themissing data prediction and calculating
results for all of them is a common approach. The R package mice
[56] starts from simple baseline imputations and recursively repeats
more sophisticated model-based predictions to improve them. We
choose RF as the underlying single imputationmethod because of its
suitability for categorical and continuous predictors. We generate
ten imputed datasets, on which we run the entire training routine
to ensure the robustness of our results against the randomness
of the imputation. To ensure that classifiers perform best, their
non-trainable parameters are optimized heuristically. This study

uses grid search over all combinations of a careful selection of
hyperparameter values (see Table 1). Our performance evaluation
is based on the hyperparameter-tuned models and averaged metrics
across imputations.

3.5 Evaluation
3.5.1 Performance. The performance of dropout prediction is es-
timated via 3-fold cross-validation, with a held-out test dataset to
evaluate future performance. In dropout prediction, the imbalanced
classes are often not addressed [51], e.g., when accuracy (ratio of
correct predictions) is the only measure of performance [8, 46].
Overly predicting no dropout inflates accuracy without addressing
the problem. Reporting per-class accuracy fixes the problem but
hampers comparing datasets with different base rates. However, we
include accuracy in the results to show how unsuitable the metric
is in practice. It is calculated for 200 thresholds, ranging from 0 to
1, to choose the threshold that yields the maximum possible score
optimally.

The more comprehensive receiver-operator characteristic (ROC)
summarizes all possible thresholds for the sensitivity (ratio of
actual dropouts detected, also called recall) and specificity (1 −
false positive rate) and can be summarized in a scalar, called area
under ROC curve (AUROC), which is often used in dropout pre-
diction. The precision-recall curve (PRC) is more informative for
imbalanced classes because it incorporates the precision (correct
ratio of predicted dropouts) instead of the specificity. It also can be
summarized in the area under PRC (AUPRC) [26]. For all metrics,
the best possible classifier with no predictors implies the baseline.
Given the base rate for dropout is 𝑟𝑑 , the baseline accuracy in binary
classification is 1 − 𝑟𝑑 . In the case of AUROC, it is 0.5; for AUPRC
it is 𝑟𝑑 .

3.5.2 Predictor Importance. To ensure the meaningfulness of our
results to administrators, the global scores of predictor importance
are of most interest. We choose a model-agnostic approach to cal-
culate the significance of single predictors, such that scores are
available independent of the model performance ranking and can
theoretically be compared across models. The Permutation Feature
Importance (PFI) measures how much the test set performance of a
model decreases when one variable is randomly permuted [8]. For
RQ2, the PFI is based on the more sensitive AUPRC. In RQ3, the
different base rates led us to use the AUROC with its constant base-
line. By excluding predictors with a variance inflation factor (VIF)
larger than 5, we ensure that predictors are independent enough
for meaningful PFI scores. The PFI is averaged over test sets and
imputations in the same way as the performance metrics.

4 RESULTS
4.1 RQ1: Dropout predictability and predictor

importance of different models
All models’ performance in dropout prediction on the general pop-
ulation is summarized in Table 2. The metrics are almost invariant
across the ten missing data imputations and hence averaged, en-
abling us to compare differences between the models independent
of the data imputation (see standard deviations in supplementary
material). The relatively small differences in the accuracy metric
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Table 1: Sets of hyperparameter values used in grid search tuning procedure by model. |predictors|: total number of predictors

Model Hyperparameter Values

Logistic regression - -

k-Nearest Neighbors Number of nearest neighbors 9, 19, 39, 59, 99, 199, 299

Naive Bayes Laplace regularization 0, 0.1, 0.5, 1.0

Neural Network

Number of neurons in first layer 256, 512, 1024
Neurons in second layer (ratio of first) 0%, 25%, 50%
Dropout rate after each layer 0%, 50%
Training epochs 5, 10

Random Forest Number of grown trees 500, 1000, 1500
Number of candidates for split 3, 5, 6, 7

Support Vector Machine

Kernel RBF, linear, polynomial
Cost 0.1, 0.5, 1.0
Gamma (for RBF kernel) {0.01, 0.1, 1.0, 10.0}/|predictors|
Class weight for dropouts 1, 3, 5

Table 2: Estimated performance metrics of fine-tuned models on the entire data respectively up to one year and two years after
first enrollment.

Time of prediction After first year After second year

Model AUPRC AUROC Accuracy AUPRC AUROC Accuracy

Baseline 0.131 0.500 0.869 0.112 0.500 0.888
Logistic Regression 0.553 0.816 0.898 0.712 0.899 0.938

k-Nearest Neighbors 0.493 0.785 0.890 0.620 0.863 0.922
Naive Bayes 0.501 0.789 0.890 0.680 0.885 0.928

Neural Network 0.561 0.823 0.899 0.722 0.903 0.939
Random Forest 0.577 0.827 0.902 0.735 0.908 0.940

Support Vector Machine 0.556 0.821 0.898 0.718 0.903 0.938

result from the high baseline accuracy. As predicted, the AUPRC
shows a larger variation than the AUROC, which empirically justi-
fies its use. Especially the area-based metrics show that all models
perform above the baseline. The RF model emerges as the best
by dominating all metrics by a notable margin at both prediction
times. The neural network does perform second-best, whereas the
traditional logistic regression shows performance almost on par
with the SVM. These four models will be referred to as the top 4.

We define the most important predictors of student dropout in
terms of their PFI as the most insightful information for administra-
tors. These predictor importances are listed in Table 3. The number
of essential predictors is relatively sparse compared to the overall
number of predictors (39). Depending on the model and time of
prediction, only seven to ten predictors impact the AUPRC by more
than 1%.

When predicting dropout after a student’s first year, performance
indicators related to grades and passing are most important, along
with continuous enrollment (i.e., a higher number of enrolled terms)
and being on track in the current year of study in all portrayed
models. The acquisition of English as a second language and other
demographic factors such as individual and peer ethnicity also im-
pact the prediction. Overall, recorded behavior within the first year

at college seems to have more impact than demographic variables.
This pattern does not only occur for random forests but across all
well-performing models. Depending on the specific model, some
rankings might change by one or two positions, but the pattern is
comparable.

Remarkable differences emerge if we compare the importance
between the two prediction time points. A fine-grained analysis of
importance change over time is the subject of RQ2. Two years after
initial enrollment, the number of enrolled terms is by far the best
predictor and is preferred by every top-4 model. In contrast, the
college GPA has lost its initial importance. By the ensemble of the
top 4 models, passed courses are preferred over the college GPA as a
predictor. The number of passed courses and year of study become
much more important. The fact that English learners are less likely
to drop out is reflected by all the models and maintains a PFI of
more than 1% among the pre-entry predictors. Also, at this point,
the ranking changes slightly when considering different models
but the magnitudes and relative importance of predictor pairs are
model-independent.
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Table 3: The 15 most important predictors after one and two years measured by Permutation Feature Importance. RF: Random
Forest. Top 4: Mean of Random Forest, Linear Regression, Support Vector Machines, and Neural Network.
Left: after one year, Right: after two years.

Predictor RF Top 4
1 College GPA 23.0% 16.1%
2 Number of enrolled terms 15.0% 16.2%
3 Passed courses 7.4% 11.6%
4 Number of school affiliations 4.9% 3.6%
5 English language learner 3.5% 3.8%
6 Current year of study 2.8% 1.6%
7 Number of declared majors 2.6% 1.9%
8 Primarily affiliated school 2.0% 2.6%
9 Ethnicity 1.3% 2.6%
10 High school GPA 1.1% 0.5%
11 Same ethnicity in courses 0.9% 0.6%
12 Residency at application 0.7% 0.8%
13 Distance to university 0.7% 0.6%
14 Pre-entry reading score 0.5% 0.5%
15 Courses per term 0.5% 0.4%

Predictor RF Top 4
1 Number of enrolled terms 48.3% 54.1%
2 College GPA 8.5% 3.5%
3 Passed courses 4.8% 7.5%
4 Current year of study 4.1% 2.8%
5 Number of school affiliations 2.5% 1.3%
6 English language learner 2.1% 2.3%
7 Primarily affiliated school 1.0% 1.4%
8 Number of declared majors 0.9% 0.4%
9 Distance to university 0.5% 0.4%
10 Same ethnicity in courses 0.5% 0.3%
11 Ethnicity 0.4% 1.1%
12 Courses per term 0.4% 0.2%
13 Pre-entry reading score 0.3% 0.3%
14 Female 0.3% 0.5%
15 High school GPA 0.3% 0.1%

4.2 RQ2: Dropout predictability and predictor
importance over time

The results for RQ2 and RQ3 are based on the RF because it per-
formed best and due to comparable predictor rankings (and per-
formance differences) between models. Figure 1 depicts the perfor-
mance of this model trained with data up to a certain time point
relative to the initial enrollment. The general trend is an increased
model performance with a growing observation span. The fact that
AUPRC is not monotonically increasing over time is due to the
change in the base rate of dropout, which starts to shrink after five
terms when the first students are known to have dropped out. The
accuracy shows no improvement over the baseline at the pre-entry
time point. Nevertheless, the two area-based metrics demonstrate
that the model already outperforms the baseline at this early time
point. Over time, and especially during the beginning of the second
year, accuracy stands slightly out from the baseline. The AUROC
shows a steady increase, most strongly in the first terms. The most
variation and increase can be observed in the AUPRC, which was
expected to be the most suitable evaluation metric in this scenario.

In Figure 2, the change of relative predictor importance is plot-
ted. At the time of initial enrollment, a mixture of demographic
and performance indicators weighs the most in the prediction. The
status as an English language learner contributes the most informa-
tion, closely followed by high school GPA, the best AP exam score,
and the student’s ethnicity. The geographic information (mostly
distance from home), the pre-entry reading score, and gender play
minor but significant roles. All other predictors influence the per-
formance by less than 4%. The ranking is strongly perturbed as
soon as behavioral data from college studies is available. By the end
of first term, the GPA leads the ranking by a large margin (22.2%).
The English language learner status retains a part of the initial
information, ranking second. The five most important factors after
one term are completed by performance-related indicators: passed
courses, number of school affiliations, and number of declared ma-
jors. Ethnicity follows with less than 4% impact, which also applies
to the high school GPA and best AP score by then.

The relative importance ranking does not consolidate after the
first term but continues to change. Most strikingly, the number of
enrolled terms drastically increases its predictive importance over
time. Variance in this predictor is possible from the second term on
and directly reflects in an importance score of 13.7% by then. At that
time point, the average grade is still the most informative predictor
(27.6%). The relative ranking does not change much within the
remainder of the first year of enrollment. After four terms, the
number of enrolled terms eventually ranks first by a significant
margin. The college GPA gets degraded to less than 10%. English
learner status still plays a role, although it is very minor. During the
second year, the ranking stays rather stable. During the third year,
the ratio of passed courses and the current year of study overtake
the importance of GPA. The current year of study slightly gains
importance, starting from the third term. Interestingly, the English
language learner status gained some meaning during that period.

4.3 RQ3: Dropout predictability and predictor
importance for subpopulations

To compare the dropout predictability and predictor importance be-
tween different groups of students, we resort to the AUROC due to
its fixed baseline of 0.5 and its sufficient sensitivity to performance
differences in RQ2, especially between the second and the fourth
term. Figure 3 shows the predictive performance as a function of
groups, along with the group sizes and dropout rates. Although
there are some unbalanced grouping factors in terms of population
size (e.g., only 33.1% of students stem from low-income families) and
dropout rates (18.9% of students from an underrepresented minority
drop out), the predictability of dropout does not vary enormously
between the respective groups. Prediction seems slightly easier for
first-generation students, non-STEM majors, and students from
low-income families and underrepresented minorities (URM).

Figure 4 visualizes the importance of predictors between the
groups. The generally most important predictor after one year,
college GPA, is the top predictor for all subpopulations. Despite
its group-independent overall relevance, we can highlight some
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Figure 1: Performance metrics for different time points of predictions against their respective baselines. PRC: precision-recall
curve, ROC: receiver-operator curve. The baseline is a random prediction for curve-based metrics, while based on the best
possible threshold for accuracy.
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Figure 3: Model performance and population sizes by grouping factors. Both are based on the data available one year after
initial enrollment.

notable differences between groups. Within the PFI of the num-
ber of enrolled terms and passed courses ratio, we observe similar
between-group differences that also rarely change the overall rank-
ing of importance within one group. For generally less important
factors, such as major and school information, current year of study,
and English learner status, one can observe minor but potentially
significant differences in absolute value.

For female students, the GPA is notably less relevant with respect
to dropout than for non-female students which also applies to
course passing. The number of enrolled terms contributes almost
equal information to both group’s predictions. Prediction for female
students may benefit more from major and school information and
the year of study. Ethnicity is alsomore relevant for female dropouts
whereas English learner status does not vary in its importance
between the two groups. First-generation student dropout stronger
depends on GPA than its counterpart, for which course passing is
more informative. The first-generation dropout prediction benefits
more from the number of school affiliations and ethnicity, whereas
English learner status and high school GPA show the opposite
interaction effect. This trend is mirrored for students from low-
income families. Only the number of school affiliations has a less
pronounced effect. Moreover, the importance of ethnicity differs
much less between the induced groups by this criterion.

Being part of a URM mostly means an increased importance of
the same factors than for low-income families. However, English
learner status is more important for non-URM students. We also
observe the clear pattern that for URM students the high school
GPA and residency location at the time of application are irrele-
vant while having predictive power for the remainder of students.
Comparing STEM majors and non-STEM majors also reveals a
prominent difference in GPA importance, being more predictive in
the case of STEM majors. Course passing is also more helpful in
predicting this group’s dropout, whereas the number of enrolled

terms is much more interesting for non-STEM majors. The same
applies to the number of school affiliations, which are irrelevant
for STEM dropout in this model. The pace of study is only relevant
for non-STEM dropout.

5 DISCUSSION AND CONCLUSION
This study has successfully employed modern classification mod-
els to predict college dropout, relying on cost-effective large-scale
administrative data that can be adopted for an early warning sys-
tem. The model-agnostic PFI yielded valuable insights into the
dropout factors. As novel contributions, we traced the predictabil-
ity of dropout over a large span of the student lifecycle and the
importance of single predictors. Moreover, the analyses address
student heterogeneity by distinguishing the predictive importance
of factors between important grouping factors of college success.

5.1 Scholarly Significance
Our model’s performance is mostly comparable with previous stud-
ies using the same data type. Studies that made predictions after
one term based on institutional data reported an AUROC between
0.69 and 0.88 (depending on the school) [44] compared to our score
of 0.76. In the literature, scores rise to the range between 0.81 and
0.93 after one year of enrollment [7, 9], where we achieve 0.83.
Results for datasets from different institutions and regions remain
hard to compare. However, considering the low overall impact of
sociodemographic factors in our analyses and the standardized fed-
eral reporting of many predictors, the findings may be generalizable
to other 4-year colleges in the US.

Due to the rich temporal structure of our data, we traced how
dropout prediction factors evolve. Although Tinto’s theory of
dropout [55] emphasizes the longitudinal character of the dropout
process, even recent studies did not include this critical dimen-
sion of dropout prediction (see Section 2.4). Therefore, we mapped
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Figure 4: Differences in predictor importance between groups when predicting dropout one year after initial enrollment.
Twenty-nine predictors with a maximal score of 1% or below for every group are omitted in this plot.

how pre-entry information decreases in value over time and that
college performance data is generally most valuable in the first
year, whereas continued enrollment is most important after the
first year. Academic integration (as measured by GPA) may become
substituted by social integration (indicated by the number of en-
rolled terms) to predict dropout over time. Interestingly, prior work
suggested the reverse [35]. However, course peer composition mea-
sures were not highly predictive as potential indicators of social
integration. An outstanding overall predictor was students’ status
as English language learners, which may be related to social inte-
gration and is worth investing more in-depth for future research.
Overall, administrative data focuses on academic integration and
contains limited information regarding social integration.

The large-scale character of our data yielded large enough sub-
populations to examine differences in predictive factors. We believe
that this interaction analysis, based on ML models, can open up
new directions in dropout prediction research. We found signifi-
cant differences between the dropout factors for certain subgroups.
Considering that college GPA, the ratio of passed courses, and the

number of enrolled terms reflect a spectrum from performance
to non-performance-related behavior, students from traditionally
disadvantaged groups may be more reliant on grades regarding
dropout. This could be an exemplified interaction of academic and
social integration. It may be worth investigating if these groups are
more likely to stay enrolled and perform worse instead of taking
a semester off before dropping out. The most striking differences
were found for students in STEM majors, whose dropout is better
predicted by their grades, and course passing. Non-STEM dropouts
are easier identified by the number of enrolled terms, number of
majors, and school affiliations. Again, academic integration may
be more crucial in STEM fields compared to other subjects for the
student’s commitment that eventually leads to dropout, resonating
with the literature [20].

5.2 Implications for Educational Stakeholders
Our results further support the value of administrative data that
every institution already has in standard formats [24], compared to
costly interviews or cleaning-intensive process data. We provide
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our analysis scripts to encourage other universities to replicate
the analyses with their data. Generally, our methodology allows
administrators directly or by re-analysis to create a precise and
smaller hence cheaper set of dropout predictors. First, the temporal
dimension of the prediction can be considered when implementing
an early warning system. At the moment of enrollment, predictions
are much more error-prone than after the first year. Based on the
change over time in dropout predictability, educational stakeholders
may choose their individual preference along the trade-off between
early interventions against dropout and accumulated evidence for
actual dropout risk. Second, the selection of predictors to obtain can
now be adapted to the actual time point where a prediction should
be made. Although administrative data itself comes at a lower
cost compared to other data sources, the integration of different
information systems across a higher education institution always
implies effort or may be subject to data privacy regulation [9]. As we
have shown, pre-entry data rapidly loses value as soon as behavioral
data at the college becomes available. Depending on the chosen
time point for dropout prediction, administrators can estimate the
value of predictors more precisely. Third, an EWS can be tailored
to specific subpopulations of the student body using group-specific
factors. We found that dropout prediction fortunately works almost
equally on groups induced by various grouping factors. However,
in the case of STEM majors, the predictor collection can vary as a
function of the targeted group.

Overall, an effectively designed EWS may help reduce overall
dropout via resource-efficient intervention by administrators. It
allows for reducing false negatives by toleratingmore false positives
using the classification threshold. Nevertheless, the following risks
should be mitigated: Biases in helpfulness associated with protected
attributes [59], which our results, fortunately, did not reveal; biasing
faculty in their behavior towards at-risk students [27], which may
be prevented sending warnings directly to students or to central
consulting offices; and misuse of the EWS for admission decisions,
which requires appropriate legislation.

5.3 Limitations and Future Work
When students at risk are identified, possible interventions may
want to address underlying reasons. Most of the identified pre-
dictors in this study may serve as an explanation for the risk of
dropout but are usually hard or even impossible to change directly.
The prediction of dropout still requires careful human examination
of individual cases.

Although we use the VIF to make sure that our univariate im-
portance metric is meaningful, there is still an inherent correlation
between most predictors. Differences in predictor importance are
in this approach naturally dependent on the existence of the other
predictors in the training. For example, while high school GPA loses
its predictive value relative to the college GPA after the first term
it does not mean that it becomes useless. Instead, other predictors
may just be more suitable for subsequent performance. This possi-
bility should be considered when deciding in favor or against the
survey of certain predictors as an educational stakeholder.

The approach of this study hopes to identify some potential
"blind spots" of traditional hypothesis-driven analyses. It provides

more insights for theory development and further hypothesis test-
ing compared to other more data- and algorithm-driven approaches
that often underlie EWS used for predicting and reporting risks
[37]. Similarly, our approach to using existing large-scale adminis-
trative data provides more cost-efficient alternatives to expensive
questionnaire-based surveys or complex clickstream data to support
educational administrations in their decision-making. Ultimately,
we believe that the automatization of EWS may allow for adaptive
student support systems to foster more learner-centered environ-
ments, enhance learning benefits, and reduce dropout risks [14, 34].
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