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ABSTRACT
Learning analytics research has highlighted that contexts matter for
predictive models, but little research has explicated how contexts
matter formodels’ utility. Such insights are critical for real-world ap-
plications where predictive models are frequently deployed across
instructional and institutional contexts. Building upon administra-
tive records and behavioral traces from 37,089 students across 1,493
courses, we provide a comprehensive evaluation of performance
and fairness shifts of predictive models when transferred across dif-
ferent course contexts. We specifically quantify how differences in
various contextual factors moderate model portability. Our findings
indicate an average decline in model performance and inconsis-
tent directions in fairness shifts, without a direct trade-off, when
models are transferred across different courses within the same
institution. Among the course-to-course contextual differences we
examined, differences in admin features account for the largest por-
tion of both performance and fairness loss. Differences in student
composition can simultaneously amplify drops in performance and
fairness while differences in learning design have a greater impact
on performance degradation. Given these complexities, our results
highlight the importance of considering multiple dimensions of
course contexts and evaluating fairness shifts in addition to perfor-
mance loss when conducting transfer learning of predictive models
in education.
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1 INTRODUCTION
Student success prediction is one of the most investigated topics
in learning analytics research. Researchers have used cutting-edge
machine learning algorithms and various data sources to forecast
the chances of success measured by grades, retention, graduation,
etc. [1, 36]. In practice, predictive analytics have also widely been
embedded in EdTech products to facilitate teaching and learning,
student advising, and other day-to-day educational activities [28].
As machine learning methods and innovative applications evolve,
research on both technical and social aspects of predictive analytics
remains critical in education.

A key challenge in building predictive analytics is model gener-
alization. Both theoretical and empirical research have suggested
that there is no “one size fits all” solution for predicting student
success across different contexts [7, 15, 21]. For example, a model
that accurately predicts student grades in a large physics lecture
class may perform poorly in an English seminar. Therefore, it has
been recommended to build and apply predictive models for similar
content areas, instructional design, and student populations to pre-
serve model performance. On the other hand, predictive analytic
products are typically deployed at the organizational level, such as
a school district or a college system, where models need to work
across instructional and institutional contexts. Therefore, models
are often used in contexts separate from those they were trained
on, a scenario known as transfer learning in computing research
communities. Additionally, cross-context application can positively
contribute to educational equity because institutions, educators,
and students in under-resourced settings might still benefit from us-
ing predictive models developed elsewhere, compared to having no
analytics at all [14]. As such, it is not sufficient to acknowledge that
contexts matter and that predictive models are difficult to transfer.
Instead, we need to understand how contexts shape the utility and
portability of those models in order to identify the limits of model
transfer and make informed decisions about model deployment.
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However, in contrast to the substantial volume of predictive mod-
eling research in the learning analytics community, there is still
limited research that provides quantitative insights into the role of
contextual factors on models’ portability.

Another important consideration when building predictive mod-
els for student success is algorithmic fairness. Models can gen-
erate predictions that are biased against disadvantaged student
groups if, for example, they are trained on data that reflects his-
torical patterns of discrimination or use predictors that are cor-
related with protected attributes [23]. These biased predictions
can eventually perpetuate existing inequities when used for edu-
cational decision-making. Therefore, it is important to understand
the sources and patterns of algorithmic bias and develop strategies
to improve the fairness of predictive models. Over the past few
years, there has been a steady increase of research on algorithmic
fairness in education[5, 14, 23], but most research examines the
fairness/bias of models in their original contexts of development,
not so much the shift in fairness/bias when models are transferred
to new contexts. Given the importance of applying models across
contexts in practice, examining the portability of fairness is also
crucial. Less portable models might not only produce inaccurate
predictions but also create additional harm through augmented
algorithmic bias.

In this study, we systematically examine the portability of stu-
dent success predictionmodels in terms of both overall performance
and algorithmic fairness. More importantly, we quantify the rela-
tionship between various contextual factors and model portability.
We focus on the task of predicting course performance with digital
trace data from Learning Management Systems (LMS). Across the
globe, LMS has become a standard part of technical infrastructure
in higher education and gathers a wealth of data on students’ learn-
ing activities and outcomes across different instructional contexts.
Such data holds the potential for educators to better understand
learning dynamics and inform targeted interventions and therefore
has been used to build predictive analytics by LMS vendors or insti-
tutions that adopt the system [29, 31]. Because learning behavior
is largely shaped by instructional conditions and this influence can
vary across student demographics [3], predictive models based on
LMS data naturally face the aforementioned challenge of portability.
In this context, we examine course-to-course model transfer and
attempt to answer two research questions:

RQ1: How do performance and fairness shift in course-course
predictive model transfer? Are there trade-offs between per-
formance and fairness shifts?

RQ2: How do contextual differences contribute to performance
and fairness shifts in course-to-course predictivemodel trans-
fer?

Our contribution to existing research and practice is threefold.
First, we move from “contexts matter” to “how contexts matter” by
providing one of the first and largest analyses of the relationship
between contextual differences and portability of predictive models
in education. Second, we advance research on algorithmic fairness
by examining fairness shift in transfer learning contexts. We also
take a holistic intersectional approach, reflecting the conjunction
of multiple social identities along which individual students may
experience unfair algorithmic treatment. Third, we empirically

evaluate one of the most common prediction tasks in learning
analytics with data available at almost every institution. Thus, our
findings directly inform real-world applications, and our analyses
can easily scale up across broader institutional contexts.

2 RELATEDWORK
2.1 Portability of Learning Analytics Models
Model portability has been identified as one of the main challenges
in learning analytics [4]. While a large volume of literature under-
scores the criticality of context similarity in ensuring the utility of
predictive models, only a select number of studies have rigorously
explored and quantified the extent to which model performance
generalizes across diverse contexts. Among these studies, some as-
sessed the consistency of given predictors of student performance
across various courses. For instance, [15] noted variances in pre-
dictive power of behavioral indicators across nine courses from
multiple disciplines, with explained variances ranging from 2% to
70.3%. [7] conducted a study with a larger sample (𝑁 = 17) and
found that no single set of predictors works consistently well in pre-
dicting academic performance across all courses. [21] assessed the
portability across 15 courses and found that only 3% of performance
variability is explained at the course level, while a substantial 68%
is attributed to individual students. Other studies built prediction
model(s) in one context and evaluated the performance degradation
when testing the same model(s) in another [4]. For example, [30]
analyzed prediction model generalizability across 16 courses and
found that the incorporation of ontological information improved
generalizability compared to similar models using low-level be-
havioral data alone. Beyond courses, [2] considered within-cohort
generalizations, emphasizing the role of similar student enrollments
in model generalizability.

Across existing research that examined the portability of predic-
tion models, researchers identified several influential contextual
factors, such as variations in course subject and content, differences
in learning designs and LMS usage, and the similarity of enrolled
students. However, these are mostly qualitative findings based on a
small number of courses in specific disciplines, which can poten-
tially be biased and inconclusive. Also, most research analyzed only
one or a few contextual factors at one time and cannot holistically
contrast the effects of various contextual disparities.

2.2 Algorithmic Fairness in Education
In education, the concept of fairness was widely studied in research
on opportunity and outcome disparities long before the spread
of digital learning [23]. As more educational stakeholders have
turned to algorithmic systems for data-driven insights into student
experience and performance, the issue of algorithmic fairness and
bias has gained broader attention within the learning analytics
community[5, 10, 14].

Tomeasure algorithmic fairness, existing research typically takes
two perspectives: group fairness (GF) and individual fairness (IF) [23].
Group fairness emphasizes statistical or predictive parity across de-
mographic groups, with metrics such as statistical parity (SP) [11],
equalized odds (EO) [18], and the Absolute Between-ROC Area
(ABROCA) [13]. Individual fairness is based on the idea that similar
individuals should be treated similarly. Example metrics include
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consistency [46] and counterfactual fairness [25]. In practice, se-
lecting which fairness metric to adopt requires careful evaluation
of the intended use of the algorithm(s) [23].

Empirical research on algorithmic fairness and bias has been
surging in recent years [5, 23]. Researchers have not only attempted
to measure algorithmic bias in various educational tasks but also
experimented with different technical strategies to mitigate the bias.
For example, one study [10] assessed the portability and fairness
of machine learning models built with LMS data. Using both pre-
processing and post-processing bias mitigation techniques, they
found that the presence of fairness constraints may increase fair-
ness while maintaining predictive capabilities. While most research
investigates model fairness and bias on a given test sample, limited
effort has examined fairness in transfer learning scenarios, which
are common in educational applications. Another study closely
related to ours [14] examined the transfer of college dropout pre-
diction models across institutional contexts and revealed that a
zero-shot transfer approach can match local model performance
without sacrificing fairness. To our knowledge, there has been no
research that explicitly investigates contextual factors of fairness
in transfer learning in education.

2.3 Intersectionality in Machine Learning
Intersectionality is a conceptual framework first proposed by [8],
pointing out that black women experience further discrimination
than either Black people or Women. This concept underscores
how the confluence of social identities jointly shapes individual
experiences rather than independently. At the macro-level, this
intersectional mechanism contributes to the complexity in imbal-
anced power structures and social inequalities. As fairness concerns
arise around machine learning applications in human society, crit-
ics have highlighted the limitation of evaluating bias with respect
to a small number of social identities in a siloed manner. Even when
a machine learning model generates fair outputs when considering
a single protected attribute, it may disadvantage groups at the inter-
section of multiple marginalized identities. This puts forth a call for
incorporating intersectionality perspectives in machine learning
research.

In the context of education, there has been some recent work
on intersectional fairness, focused on developing metrics to assess
intersectional fairness in algorithms [14, 40]. Somemetrics compare
each intersectional group against the overall sample on measures
of model performance, such as Statistical Parity (SP) Subgroup
Fairness and Equal Opportunity (EO) Subgroup Fairness [22]. Other
metrics focus more on the gaps between various subgroups, like the
gap between the highest and lowest subgroup AUCs [26]. Another
example is the 80% rule (four-fifths rule) [39] which determines
unfair impact by assessing the ratio of favorable outcomes between
a disadvantaged group and the best-performing group, marking a
significant disparity if this ratio falls below 0.8. Despite the growing
interest and initial research efforts, the research of intersectional
fairness in predictive models, especially in transfer learning, is still
in its early stages. The existing studies also emphasize the need for a
more in-depth investigation into how current algorithms influence
the consistency of fairness across different intersectional groups
[5, 14].

3 MATERIAL AND METHODS
We examine the portability of models that leverage students’ be-
havioral traces in a course to predict their course performance.
We train models from a single course and test them on a different
course. We characterize predictive performance and algorithmic
fairness on each model and use multiple regressions to predict per-
formance and fairness shifts (from local to transfer courses) using
course-level contextual differences.

3.1 Dataset
We analyze undergraduate courses taught at a large public univer-
sity in the United States over six quarterly terms between Fall 2021
and Spring 2023, excluding summer terms. The data comes from
two systems: Canvas LMS, which provides students’ behavioral
traces and learning design information, and Student Information
System, which provides administrative records such as students’
background information and course performance. The raw data
covers 39,789 unique students across 9,444 unique courses (675,755
student-course outcomes)1.

3.2 Predictive Models for Academic
Performance

3.2.1 Outcome and Predictors. We formulate a binary classifica-
tion problem that predicts each student’s course-level performance
using their behavioral features in the corresponding LMS course
space, which is one of the most common learning analytics tasks.
The outcome variable is whether a student achieves proficiency (A-
or above) or not [16]. We focus on proficiency because the distribu-
tion of original letter grades is highly skewed toward the higher
end due to the selectivity of this institution and grade inflation in
recent years. Under this construction, we remove courses that do
not use letter grades.

Behavioral features are calculated based on students’ behavioral
traces within the first half (five weeks) of the course, in line with
the real-world application scenario of creating early alerts for in-
structors [44]. We keep courses with at least 50 students and a
proficiency rate between 20% and 80%, where human prediction of
at-risk students is comparatively harder and automated predictive
analytics have a larger marginal value. We also remove courses
that do not actively use Canvas LMS by keeping those with at most
50% missing value for learning design variables (see details in the
next subsection). The final dataset includes 37,089 unique students
across 1,493 unique courses (225,044 student-course outcomes).

The 16 behavioral features at the student-course level (Table 1)
are all continuous variables with non-negative values. To handle
outliers, we normalize the variables by dividing by the 95th per-
centile, and then apply the hyperbolic tangent function 𝑡𝑎𝑛ℎ(𝑥),
resulting in values between 0 and 1. As 𝑡𝑎𝑛ℎ(𝑥) is approximately
linear between 𝑥 = 0 and 𝑥 = 1, this transformation does not
change the shape of the bulk of the variable’s distribution; however,
the outliers are “reigned in” to be no larger than 1 (noting that
𝑡𝑎𝑛ℎ(1) = 0.76 represents the 95th percentile). Missing values are
filled with 0, which carry no predictive power due to zero variation.

1When the same course is delivered by different instructors or offered in different years,
we consider them different unique courses due to potential variations in instructional
design and student composition, which are the contextual factors we aim to test.
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3.2.2 Models. For our binary classification task, we use two well-
established and representative algorithms: logistic regression with
elastic net regularization and boosted classification trees, chosen
for their prevalent use in predictive modeling literature. Logistic re-
gression is selected for interpretability, while tree-based algorithms
are chosen because they tend to have good performance. Models are
implemented in MATLAB R2022a, using the functions lassoglm
and fitcensemble. The logistic regression models have two hyper-
parameters: 𝜆, which controls the strength of regularization, and 𝛼 ,
which toggles between lasso and ridge regularization. The boosted
classification tree models have three hyper-parameters: the number
of trees, the learning rate, and the maximum number of decision
splits.

To construct a baseline for model portability, we first build and
evaluate local predictive models, i.e., models trained and tested on
the same course. We fit models to each of the 1,493 courses using
stratified 9-fold cross-validation to optimize the hyper-parameters
on 90% of the data and evaluate local performance on a held-out
sample of 10% of the data. To account for class imbalance, we
apply Synthetic Minority Over-Sampling Technique (SMOTE) after
the 9-fold split using 𝑘 = 2 nearest minority-class neighbors. We
repeat this process for each 90/10 split to generate predictions
for all the students in the course. Lastly, to make the predictions
more robust, we repeat this whole process 5 times, with new 90/10
splits generated with each repetition, and average the predicted
probabilities for each student to get a final predicted probability.

We evaluate model transfer performance by testing a locally
trained model on every course that occurs in later academic terms,
in line with how models would be built and deployed in real-world
contexts. Therefore, courses from Spring 2023 are used only for test-
ing and not for training models. When testing on transfer courses,
we mimic the process for evaluating local performance as much
as possible. We train a model on a random 90% subset of the local
course (to match the 90/10 split in local training) using the average
values of the optimal hyper-parameters (averaged across the local
90/10 splits and 5 repeats). We then test this model on each of the
transfer courses. We repeat this process 5 times (trained on a new
random 90% subset) and average the predicted probabilities for each
student-course outcome.

Because we are running binary classifications, the models’ pre-
dicted probabilities need a threshold to generate the final predic-
tions for individual records. We determine the thresholds by the
Youden Index (J) [43] using the ROC of the training (local) courses
only.

3.3 Key Metrics
3.3.1 Performance and Fairness. To evaluate the predictive per-
formance of the models, we use Area Under the ROC Curve (AUC)
and Balanced Accuracy which are more robust to imbalanced data
issues.

To measure algorithmic fairness, we use Absolute Between ROC
Area (ABROCA) [13], Equalized Odds (EO) [33], and Pseudo 𝑅2.
ABROCA is computed by the absolute value of the area between
the two groups, 𝐴 = 0 and 𝐴 = 1, of their ROC curves as follows:

𝐴𝐵𝑅𝑂𝐶𝐴(𝐴) =
∫ 1

0
|𝑅𝑂𝐶𝐴=0 (𝑡) − 𝑅𝑂𝐶𝐴=1 (𝑡) | 𝑑𝑡

EO measures the equality of the true positive rate (TPR) and true
negative rate (TNR) between two groups, 𝐴 = 0 and 𝐴 = 1. We
average the EO TPR and EO TNR for an overall EO score.

𝐸𝑂 (𝐴) =
|𝑇𝑃𝑅 (𝐴=0) −𝑇𝑃𝑅 (𝐴=1) | + |𝑇𝑁𝑅 (𝐴=0) −𝑇𝑁𝑅 (𝐴=1) |

2
ABROCA and EO can only measure fairness for two comparative
groups at a time (e.g., those defined by a binary attribute). We focus
on fairness regarding race and gender, which are the most com-
monly investigated demographic attributes in algorithmic fairness
research [14]. Specifically, we examine underrepresented racial
minorities (URM) vs. non-URM and female vs. male, respectively.

In response to the need to integrate intersectionality into al-
gorithmic fairness research [17], we develop a novel measure of
fairness by running a logistic regression that predicts the cor-
rectness of individual predictions from the foregoing predictive
model with a series of demographic variables and their interac-
tions (|𝑌 − 𝑌 | ∼ 𝑟𝑎𝑐𝑒 + 𝑔𝑒𝑛𝑑𝑒𝑟 + 𝑟𝑎𝑐𝑒 ∗ 𝑔𝑒𝑛𝑑𝑒𝑟 ). Assuming that
unequal prediction correctness across demographic groups indicates
decreased fairness, we compute Pseudo 𝑅2 of the logistic regression
to measure intersectional fairness, with a smaller value indicating
increased fairness. There are many proposed Pseudo 𝑅2 metrics for
logistic regression and we choose Tjur’s 𝑅2 [38], also known as the
coefficient of discrimination, which is simply the difference between
the means of class distributions:

𝑃𝑠𝑒𝑢𝑑𝑜 𝑅2 = 𝜋1 − 𝜋0

where 𝜋1 and 𝜋0 denote the averages of fitted values for successes
and failures, respectively. The values of all the fairness measures we
use range from 0 to 1, and the ideal fairness is 0. However, we often
report 1 − 𝑓 𝑎𝑖𝑟𝑛𝑒𝑠𝑠 throughout the paper so that fairness aligns
with performance in that values of 1 are considered better than
0. This measure allows for examining the intersection of multiple
protected attributes in diverse functional forms.

3.3.2 Portability. Wequantify both performance and fairness shifts
using the percentage difference from the local model as follows:

Shift =
Local - Transfer

Local
× 100

3.3.3 Contextual Differences. To characterize the context differ-
ences between training and testing courses, we construct four
groups of contextual factors from LMS and administrative data:
Subject Matter, Admin Features, Learning Design and Student Com-
position. Given the heterogeneity of these factors, which include
both binary and continuous variables of varied scales, we use dif-
ferent methods to compute pairwise differences between local and
transfer courses so that each computed contextual difference ranges
from -1 to 1 or 0 to 1. Detailed descriptions of these factors and
different computation methods are presented in Table 2.

4 RESULTS
4.1 Patterns of Performance Shift, Fairness

Shift, and Trade-offs
4.1.1 Predictive Performance and Performance Shift. The local and
transfer performance distributions are shown in Fig. 1. The mean
and standard deviation for the AUC assessed on the training (local)
course is 0.65± 0.075 for LR and 0.63± 0.080 for GBT. The Balanced
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Category Variable References
General Number of sessions [7, 15, 24, 45]

Number of actions [7, 45]
Number of views on syllabus [20]
Number of views on grade summary [20, 45]
Time online [7, 19, 45]
Average session duration [7, 19]

Learning content Number of actions associated with learning content [41, 42]
Time spent viewing learning content [24]
Number of actions associated with wikis [7, 45]

Assessment Number of actions associated with assignments [41, 42]
Time spent on assignments [42]
Number of assignments submitted [45]
Number of actions associated with quizzes [42]
Number of quizzes submitted [35]

Communication Number of actions associated with discussions [6, 42]
Time spent on discussions [24, 27]

Table 1: Behavioral features. These variables are used in logistic regression and gradient-boosted trees to predict student
outcomes. All variables are scaled between 0 and 1.

Contextual Factor (Each Course) Contextual Difference (Pairwise) References
Subject Matter
Course 1 if only with diff course names [7, 15, 29]
Department 1 if only with diff course names and depts [15, 29]
School 1 if only with diff course names, depts, and schools [21, 29]
Discipline 1 if with diff course names, depts, schools and disciplines [12, 15, 29]

Admin Features
Instructor 1 if with diff instructors [12]
Online (-1,0,1) 𝑙𝑜𝑐𝑎𝑙 − 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 (online=1, in-person=0)
Upper level (-1,0,1) 𝑙𝑜𝑐𝑎𝑙 − 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 (upper=1, lower=0)
Class size 𝑙𝑜𝑐𝑎𝑙 − 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 (normalized) [21]
Term number of terms apart (scaled)

Learning Design
Number of modules 𝑙𝑜𝑐𝑎𝑙 − 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 (normalized) [34]
Number of files 𝑙𝑜𝑐𝑎𝑙 − 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 (normalized) [7, 15, 29]
Number of items per module 𝑙𝑜𝑐𝑎𝑙 − 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 (normalized)
Number of announcements 𝑙𝑜𝑐𝑎𝑙 − 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 (normalized) [9, 37]
Number of files before course begins 𝑙𝑜𝑐𝑎𝑙 − 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 (normalized)
Number of visible navigational items 𝑙𝑜𝑐𝑎𝑙 − 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 (normalized)
Number of assignments 𝑙𝑜𝑐𝑎𝑙 − 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 (normalized) [7, 15, 29]
Number of quizzes 𝑙𝑜𝑐𝑎𝑙 − 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 (normalized) [7, 15, 29]
Number of discussion threads 𝑙𝑜𝑐𝑎𝑙 − 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 (normalized) [7, 15, 29]

Student Composition
Students enrolled 1 − 2 × #𝑜𝑣𝑒𝑟𝑙𝑎𝑝

#𝑙𝑜𝑐𝑎𝑙+#𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 [32]
% URM 𝑙𝑜𝑐𝑎𝑙 − 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 (normalized)
% Female 𝑙𝑜𝑐𝑎𝑙 − 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 (normalized)

Table 2: Course-level contextual factors used to explain performance and fairness shifts. Subject Matter variables are
binary with 1 indicating the highest level at which the local and transfer courses differ. Term differences are scaled
between 0 and 1. The normalization used for continuous variables is 𝑙𝑜𝑐𝑎𝑙−𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟

𝑙𝑜𝑐𝑎𝑙+𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 so that values ranged between -1 and 1.

Accuracy is 0.65±0.056 for LR and 0.65±0.059 for GBT. When these
models are assessed on the 1,225 other (transfer) courses, there is
a clear performance drop with an AUC of 0.59 ± 0.090 for LR and
0.57±0.082 for GBT. The Balanced Accuracy on the transfer courses
is 0.55 ± 0.061 for LR and 0.54 ± 0.060 for GBT. The similarity in

the overall shapes of these two distributions does not guarantee
that the models are consistent at the level of individual course
performance. To check this consistency, we use Pearson correlation
between the LR and GBT models assessed on the local courses only,
as incorporating transfer courses may break the independence
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assumption. The LR and GBT models have correlation coefficients
of 𝑅 = 0.71 for AUC and 𝑅 = 0.69 for Balance Accuracy. While
and GBT are strongly correlated, their medians are significantly
different as determined by a Wilcoxon signed-rank test for both
AUC (p < 2.2 × 10−16) and Balanced Accuracy (p < 2.2 × 10−16).

The performance shift distributions are shown in Fig. 2. Among
all local-transfer course pairs and across both LR and GBT, over
70% experience a loss in performance: specifically, 72% for AUC
and 86% for Balanced Accuracy. The mean and standard deviation
of AUC shift are 8.0%± 16.2% for LR and 9.2%± 15.8% for GBT. The
Balanced Accuracy shift is 15.1% ± 11.2% for LR and 15.6% ± 11.1%
for LR. Performance shift is fairly consistent between LR and GBT
models, with a correlation coefficient of 𝑅 = 0.55 for AUC shift
and 𝑅 = 0.48 for Balanced Accuracy shift, as well as simultaneous
performance increase or loss in 67% of the course pairs.

4.1.2 Algorithmic Fairness and Fairness Shift. The local and transfer
fairness distributions are shown in Fig. 3 for several different mea-
sures. The mean and standard deviation for the ABROCA assessed
on the training (local) course are 0.14 ± 0.086 (race), 0.12 ± 0.070
(gender) for LR and 0.14 ± 0.083 (race), 0.12 ± 0.075 (gender) for
GBT. The EO are 0.13±0.084 (race), 0.12±0.069 (gender) for LR and
0.13± 0.084 (race), 0.12± 0.075 (gender) for GBT. And lastly, Pseudo
𝑅2 are 0.12±0.069 for LR and 0.12±0.075 for GBT. When evaluating
these models on the 1,225 transfer courses, we do not observe sig-
nificant changes in the mean and variance of those aforementioned
fairness metrics. The mean and standard deviation for the ABROCA
assessed on the training (transfer) course are 0.13 ± 0.085 (race),
0.12 ± 0.071 (gender) for LR, and 0.14 ± 0.085 (race), 0.12 ± 0.073
(gender) for GBT. The EO are 0.11±0.082 (race), 0.11±0.072 (gender)
for LR and 0.12 ± 0.084 (race), 0.11 ± 0.077 (gender) for GBT. And
lastly, Pseudo 𝑅2 are 0.04 ± 0.036 for LR and 0.04 ± 0.034 for GBT.

In all distributions, our measures vary between 0 and 1, with 0
being completely unfair and 1 being completely fair. The models
tend to be less fair regarding race (URM/Non-URM) compared to
gender (female/male). However, there are relatively minor differ-
ences between LR and GBT distributions and between local and
transfer distributions. The medians (25th, 75th percentile) of the
1-ABROCA measure for LR models assessed on local courses are
0.886 (0.830, 0.922) for race and 0.896 (0.845, 0.928) for gender. Race
and gender are significantly different (p = 7.441 × 10−5) using a
Wilcoxon signed-rank test. Similarly, the 1-EO measures for LR
local courses are 0.889 (0.831, 0.935) for race and 0.892 (0.840, 0.936),
and are significantly different (p = 1.256 × 10−3). We measure the
fairness of race, gender, and their interaction simultaneously using
1-Pseudo 𝑅2, which has a median (25th, 75th percentile) value of
0.979 (0.955, 0.989) for LR models assessed on the local course.

The fairness of the LR and GBT models assessed on the local
courses are correlated with values of 𝑅 = 0.47 for ABROCA race,
𝑅 = 0.35 for EO race, 𝑅 = 0.43 for ABROCA gender, 𝑅 = 0.32 for EO
gender, and 𝑅 = 0.30 for Pseudo 𝑅2. Furthermore, the median values
between the LR and GBT models are not significantly different
as determined by a Wilcoxon signed rank test. The p-values are
p = 0.693 for ABROCA race, p = 0.723 for EO race, p = 0.550 for
ABROCA gender, p = 0.812 for EO gender, p = 0.050 for Pseudo 𝑅2.

The fairness shift distributions are shown in Fig. 4. Unlike perfor-
mance shift, fairness shift does not show a global average drop. The

percent of local-transfer course pairs that have a racial fairness drop
averaged across LR and GBT models, is 48% and 39% as measured
by 1-ABROCA and 1-EO, respectively. The percent of course pairs
that have a gender fairness drop is 49% and 41% as measured by
the same metrics. And 55% of the course pairs have a fairness drop
as measured by 1-Psuedo 𝑅2. The mean and standard deviation of
fairness shift for the LR model is −1.60% ± 16.7% for 1-ABROCA
race, −2.77% ± 15.2% for 1-EO race, −0.90% ± 12.4% for 1-ABROCA
gender, −1.58% ± 12.3% for 1-EO gender, and 0.657% ± 5.08% for
1-Pseudo 𝑅2. Fairness shift is fairly consistent between LR and GBT
models, with correlation coefficients of 𝑅 = 0.55 for ABROCA race,
𝑅 = 0.40 for EO race, 𝑅 = 0.43 for ABROCA gender, 𝑅 = 0.35 for
EO gender, and 𝑅 = 0.37 for Pseudo 𝑅2.

4.1.3 Performance-Fairness Trade-Off. We examine the potential
trade-off between performance and fairness in both the local and
transfer courses (Fig 5). We also examine the relationship between
performance shift and fairness shift. We focus on the LR models,
but the performance-fairness relationships are very similar to the
GBT models. We also focus on Balanced Accuracy as our measure
of performance, and 1-Pseudo 𝑅2 as our measure of fairness. Both
these measures are computed using threshold-ed predictions, and
1-Pseudo 𝑅2 is a more comprehensive measure of fairness than
ABROCA and EO since it combines race and gender.

No evident linear relationship is observed between the perfor-
mance and fairness metrics in the LR models assessed on either
the local courses or transfer courses. The Pearson correlation coef-
ficient between Balanced Accuracy and 1-Pseudo 𝑅2 is 𝑅 = 0.005
for local courses and 𝑅 = −0.05 for transfer courses. Similarly, no
linear relationship is observed between performance and fairness
shifts, with Balanced Accuracy and 1-Pseudo 𝑅2 having a corre-
lation coefficient of 𝑅 = 0.01. Although there is a U-shaped joint
distribution between Balanced Accuracy (Transfer) and 1-Pseudo
𝑅2 (Transfer), it can be explained by the joint distribution of two
independent variables such as a normal distribution (Balanced Ac-
curacy in Figure 1) and a beta distribution (1-Pseudo 𝑅2 in Figure 3).
This suggests that the U-shape results from the tail of the 1-Pseudo
𝑅2 distribution being sampled more frequently in the middle of the
Balanced Accuracy distribution where there are more observations.

4.2 Contextual Differences and
Performance/Fairness Shift

We investigate the relationship between contextual factors and
model portability by regressing performance shift and fairness shift
on differences in contextual variables between the testing (transfer)
course and the training (local) course. Given the similar findings
in both LR and GBT, we illustrate our findings with LR as the
example in this section. Before regressing, we check the correlation
between each pair of contextual factors to account for potential
co-linearities. This results in the removal of the number of items per
module variable from the regression. Contextual variables in our
data set are categorized into four groups: Subject Matter, Admin
Features, Learning Design, and Student Composition (see Tables
2). We perform regression on each group of variables separately
to gain an understanding of the effect size across different aspects
of contextual factors. We report adjusted 𝑅2 to account for the

718



Course-Level Correlates of Performance and Fairness Shift in Predictive Model Transfer LAK ’24, March 18–22, 2024, Kyoto, Japan

Figure 1: Distribution of predictive performance. Performance of predictivemodels evaluated on the training course (local)
and other courses (transfer). Models include boosted trees (GBT) and logistic regression (LR). Measures of performance
include AUC (left) and Balanced Accuracy (right). Histograms are normalized to have an area of 1 (density).

Figure 2: Distribution of performance shift. Percent change in AUC (left) and Balanced Accuracy (right) from local to
transfer models, including boosted trees (GBT) and logistic regression (LR). Histograms are normalized to have an area
of 1 (density).

groups having differing numbers of variables. Table 3 shows the
adjusted 𝑅2 for each of these regressions using several measures of
performance and fairness shift as the outcome variables.

Among the four groups of contextual variables, differences in
Admin features between local and transfer courses consistently
elicited the largest adjusted 𝑅2 values across all metrics of perfor-
mance shift and fairness shift. For performance shift, the group with
the second largest𝑅2 values was Learning Design, using either AUC
or Balanced Accuracy. The Student Composition variables have the
third largest 𝑅2. However, for the fairness shift, these results are
reversed. Student Composition variables tend to have the second
largest𝑅2 valueswhile LearningDesign has the third largest, at least
the ABROCA and EO measures of fairness. Student Composition
variables have a noticeably stronger relationship with the fairness
shift of race (URM/Non-URM) than on gender (female/male). When
using the Pseudo 𝑅2 measure of fairness, Learning Design again
has the second largest 𝑅2, with Student Composition having the
third largest. Across all metrics of performance shift and fairness
shift, the Subject Matter variables have negligible 𝑅2 values.

We integrate all contextual variables into a single regression
model and compute adjusted 𝑅2 values (Table 3). The full model’s
𝑅2 values are approximately the sum of the 𝑅2 values when using
each group separately (always at least 80%). The full model accounts
for a modest percent of the variance in fairness shift ranging from
𝑅2 = 0.090 to 𝑅2 = 0.139 across our different metrics. However, the
full model can only account for a minor percentage of variance in
performance shift with 𝑅2 = 0.029 for the AUC shift and 𝑅2 = 0.036

for the Balanced Accuracy shift. Figure 6 shows coefficient esti-
mates and 95% confidence intervals from the full regression model
for every contextual variable. Variables are considered significant
predictors if their confidence intervals do not intersect zero.

In the Subject Matter category, coefficient estimates are trending
positive when predicting performance shift but are largely insignifi-
cant when predicting fairness shift. Here, positive coefficients mean
that when the training and testing courses are different (e.g., dif-
ferent departments), there is likely a drop in model performance
(i.e., increased performance shift). The training and testing course
being a different course of being from different disciplines tends
to be a better predictor of performance shift than them being from
different departments or schools.

In the Admin Features category, differences between various
training and testing are related to performance shift and fairness
shift in different ways. Class size is found to be a strong predictor of
both performance shift and fairness shift but with opposite valence.
A positive coefficient means that when the training course is larger
than the testing course, the portability decreases (i.e., increased
shift). This is the case for performance shifts. However, the opposite
is true for the fairness shift. A similar phenomenon occurs regarding
the course level variable. Here, a positive coefficient means that
training on an upper-level course and testing on a lower-level
course correlates with decreased portability (increased shift). This is
the case for fairness shifts, but the opposite is true for performance
shifts.

For the online variable, a positive coefficient means the training
on an online course and testing on an in-person course correlates
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Figure 3: Distributions of algorithmic fairness. Fairness of predictive models evaluated on the training course (local) and
on other courses (transfer). Models include boosted trees (GBT) and logistic regression (LR). Measures of fairness include
1− Absolute Between-ROC Area (ABROCA, top row), 1−Equalized Odds (EO, middle row), and 1−Pseudo 𝑅2 (bottom
row). ABROCA and EO are computed separately for race (left) and gender (right), while Pseudo 𝑅2 is Tjur’s 𝑅2 from
(logistic) regressing individual predictive correctness on race, gender, and their interactions simultaneously. Histograms
are normalized to have an area of 1 (density).

Performance Shift Fairness Shift

Difference in ... Δ AUC Δ Balanced Accuracy Δ ABROCA (URM) Δ ABROCA (Gender) Δ EO (URM) Δ EO (Gender) Δ Pseudo 𝑅2

Subject Matter 0.001 0.001 0.000 0.000 0.001 0.000 0.000
Admin Features 0.016 0.023 0.071 0.131 0.082 0.083 0.085
Learning Design 0.011 0.009 0.015 0.011 0.014 0.003 0.010
Student Composition 0.008 0.004 0.042 0.018 0.038 0.009 0.002

All of the above 0.029 0.036 0.121 0.139 0.128 0.090 0.099

Table 3: Explanatory power of contextual differences on performance and fairness shifts. Each cell shows adjusted 𝑅2

values from regressing performance/fairness shift (column header) on contextual differences (row header, in Table 2).

with decreased portability (increased shift). This is the case for
performance shift and, to a lesser extent, fairness shift as well. A
similar pattern is observed for the term gap, for which longer time
intervals between training and testing courses correlated with both
larger performance shifts and fairness shifts. Lastly, training and
testing on courses taught by different instructors seem to correlate
mildly with performance shift but not fairness shift.

In the Learning Design category, all features significantly corre-
late with performance shifts, and most of them significantly corre-
late with fairness shifts. However, the coefficients when predicting

fairness shift seem inconsistently positive or negative across the
various metrics of fairness. Their signs are more consistent when
predicting performance shifts across AUC and Balanced Accuracy.
But across the variables, the signs are mixed. For all these variables,
a positive coefficient means that when the training course has more
of 𝑋 than the testing course, the portability decreases (increased
shift). The variables with positive coefficients for performance shift
include the number of files, the number of announcements, the
number of files uploaded before the course starts, and the number
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Figure 4: Distribution of fairness shift. Percent change in 1−ABROCA (top row), 1−Equalized Odds (EO, middle row), and
1−Pseudo 𝑅2 (bottom row) from local to transfer models. Models include boosted trees (GBT) and logistic regression (LR).
Histograms are normalized to have an area of 1 (density).

Figure 5: Performance-fairness trade-off. Performance (Balanced Accuracy) vs. fairness (1−Pseudo 𝑅2) of LR models
evaluated on local courses (left) and transfer courses (middle). Performance shift vs. fairness shift from local to transfer
models (right).

of discussion threads. The variables with negative coefficients in-
clude the number of modules, the number of visible navigational
items, the number of assignments, and the number of quizzes.

In the Student Composition category, differences in demographic
composition significantly correlate with both performance and fair-
ness shift. Differences in the percentage of URM students are a
strong predictor of performance shifts and URM fairness shifts
but not gender or Pseudo 𝑅2 fairness shifts. Its positive coefficient
means that when the training course has a higher percentage of

URM students than the testing course, there is decreased portability
(increased shift). Similarly, when the training course has a higher
percentage of female students than the testing course, performance
shifts and fairness shifts have decreased portability (increased shift),
with the exception of Pseudo 𝑅2 shift. The percent of overlap, the
percent of students in both the training and testing course, is weakly
significant with performance shift and does not significantly corre-
late with fairness shift.
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Figure 6: Estimated effects of contextual differences on performance and fairness shifts. Regression coefficients of
differences in each contextual variable (column) for performance shift (top) and fairness shift (bottom) from local to
transfer models. Error bars represent 95% confidence intervals.

5 DISCUSSION AND CONCLUSION
We present one of the first and largest empirical studies of the per-
formance and fairness portability of predictive models in education.
We analyze how contextual differences between courses moder-
ate performance and fairness shifts when models are developed
in one course (local) and applied to another (transfer). Our results
suggest that model transfer produces clear performance drops on
average across different course pairs (Figure 2), whereas fairness
shifts have less consistent directions (Figure 4) yet are more pre-
dictable from contextual differences (Table 3). We also show that
performance and fairness shifts co-vary differently along dimen-
sions of course-level contextual features. Not only are some groups
of contextual features better predictors of one type of shift more
than the other (such as Learning Design and Student Composition),
but some specific features positively correlate with one type of shift
while negatively correlating with the other (such as differences in
class size) (Figure 6). However, at the aggregate level, there is no
clear trade-off between performance and fairness (Figure 5).

These findings have important implications for both researchers
and practitioners. Researchers should not overlook the portability
of fairness when studying distribution shifts. While prior research
has largely centered on performance in the context of prediction
portability, our findings emphasize the need to consider fairness,
as data distribution shifts appear to have some disparate effects
on performance and fairness. In stark contrast to the consistent
pattern of performance decline, the shift in fairness centers around
zero when transitioning from a model trained on one course to

another. One possible reason for this in our study is that we did not
control for demographic imbalance in our courses, either training
or testing. This could have introduced noisy estimates for fairness
shift. This indicates the complexities and nuances involved in fair-
ness shifts, which can be modulated by diverse factors when not
explicitly adjusting for them. More in-depth research about the
portability of fairness is needed to explain these behaviors better.
Our study also suggests practical implications for practitioners in
this field, emphasizing the importance of accounting for various
dimensions of course contexts during the transfer of predictive
models. Aligning learning designs between training and testing
sets could be more beneficial for sustaining model performance
than ensuring subject matter consistency. Furthermore, ensuring
similarity in admin features and student composition across these
sets may help preserve both performance and fairness, as dispari-
ties in these contextual factors significantly impact both aspects.
However, given the varied and sometimes even contrasting effects
of specific contextual differences on performance and fairness, we
have yet to pinpoint an optimal strategy that effectively balances
both aspects. This highlights the need for more detailed research
in this field to uncover how to strike a balance between preserving
performance and fairness in transfer learning.

Despite our large sample size and diverse feature set, there are
some limitations within our current work. Firstly, we only include
courses with at least 50 students as training and testing set in our
analysis, which we did for two reasons. First, from a practical stand-
point, we are training and testing models within each course, so we
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needed sufficient samples to ensure the quality of model training.
Second, from an application aspect, academic prediction models are
most useful in large courses where instructors may not adequately
understand each student well. Another limitation is that our data
set is from only one institution, which could contain hidden bias.
As such, we cannot guarantee that the regression estimations from
our analysis can be generalized well to other institutions, especially
those with largely different demographic compositions. Given these
limitations, there are several lines of future research. One would be
expanding our current work to other LMS platforms besides Can-
vas and replicating the results at other institutions to not only test
the robustness of our current findings but also to provide deeper
insights into how platform-specific contextual nuances influence
predictive models. Regardless, future studies should investigate
strategies to enhance both performance and fairness, either by in-
corporating contextual information into the prediction process or
by devising course clustering strategies informed by the insights
from our study.
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