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Abstract

Predictive analytics is a widely used application of learning analyt-
ics, but many resource-constrained institutions lack the capacity to
develop their own predictive models or rely on proprietary models
trained in different contexts with little transparency. In this context,
transfer learning holds promise for expanding reliable and equitable
access to predictive analytics, but this potential remains underex-
plored given existing legal and technical constraints. In this paper,
we examine transfer learning strategies in the context of retention
prediction at two-year community colleges in the United States,
which enroll the most postsecondary students from underserved
communities with higher dropout rates than selective universities.
We envision a scenario where community colleges can collaborate
with each other and with four-year universities to develop reten-
tion prediction models under privacy constraints, and evaluate the
risks and potential improvement strategies of cross-institutional
model transfer for different stakeholders. Using detailed admin-
istrative records from 4 research universities and 23 community
colleges, which cover more than 800,000 students across 7 cohorts,
we first identify performance and fairness degradation when source
(external) models are deployed at a target institution without any
localization. Fortunately, publicly available institution-level contex-
tual information can be used to forecast these performance drops
and offer early guidance for model portability. For model develop-
ers under data privacy regulations, sequential training that selects
training institutions based on demographic similarities proves use-
ful for enhancing the general fairness of resulting models without
compromising performance. For target institutions without local
data to fine-tune source models, we find that customizing evalu-
ation thresholds for different sensitive groups is more successful
than established transfer learning techniques at improving perfor-
mance and fairness of deployed models. Our findings suggest the
value of transfer learning for more accessible educational predictive
modeling and call for judicious use of contextual information in
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model training, selection, and deployment to achieve reliable and
equitable model transfer!.
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1 Introduction

With the advancement of digital infrastructure and the abundance
of big data in education, predictive analytics has been playing an
increasingly important role in various educational decision-making
scenarios [27]. The development of reliable predictive models typi-
cally relies on access to high-quality training datasets and careful
modeling decisions, but in reality, under-resourced educational
agencies with the greatest need for predictive analytics often lack
the necessary local infrastructure and resources to build customized
models. This dilemma challenges the promise of predictive analytics
to alleviate the scarcity of quality educational resources for disad-
vantaged learners and improve educational equity accordingly.

In this context, transfer learning — a machine learning technique
where a model trained on one task is adapted to perform a different
but related task by leveraging existing knowledge [29]- becomes a
potential solution to bridging gaps in building predictive analytics
between differently resourced schools, institutions, and districts. In
fact, many educational organizations have already deployed exter-
nally developed predictive models, representing a basic scenario
of transfer learning. However, the performance and limitations of
such model transfer processes have not been fully understood in
educational contexts. Therefore, we present this study that formally
investigates transfer learning strategies in one of the most studied
educational predictive modeling tasks — college retention predic-
tion. We focus on fairness and privacy of the technical processes,
addressing major ethical concerns for educational stakeholders.

!Codes to reproduce our experiments are available at https://github.com/AEQUITAS-
Lab/Transfer-Learning-LAK-2025
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We focus on college retention prediction because college dropout
is a persistent challenge in higher education. In the United States,
only 39.2% of students at two-year public institutions graduate
within three years, and 65.7% of students at four-year public in-
stitutions graduate within six years [33]. As part of their efforts
to improve student retention and success, many institutions have
utilized retention predictive models to identify at-risk students
and inform timely interventions [1, 3, 4]. As with other predictive
analytic tasks in education, under-resourced institutions, such as
community colleges, often lack access to high-quality data and
technical expertise for in-house model development and in the best
case rely on predictive models developed by third-party vendors
with limited transparency or local customization [32]. In addition,
existing privacy and data protection laws, such as the Family Ed-
ucational Rights and Privacy Act (FERPA), impose restrictions on
sharing student data beyond institutional boundaries and add fur-
ther conditions to the feasibility of transfer learning strategies.

Our study provides a holistic evaluation of ethical issues associ-
ated with existing practices of cross-institutional transfer of reten-
tion prediction models, as well as potential improvement strategies
in line with current regulations. We focus on retention prediction
for community colleges given their critical role in serving disad-
vantaged populations and improving economic and social mobil-
ity. Using comprehensive administrative data from 27 institutions
across seven student cohorts, we consider risks and transfer learn-
ing strategies for both model developers (e.g., third-party vendors)
and model users (i.e., community colleges). Formally, we address
the following research questions:

RQ1. What are the risks associated with directly applying a
pre-trained model for college retention prediction? Under what
conditions are these risks higher or lower?

RQ2. For model developers, what strategies during the model
training and selection phases may alleviate the risks in model trans-
fer without access to model users’ local historical data?

RQ3. For model users, what strategies during the model evalua-
tion phase may alleviate the risks in model transfer without access
to model training details?

We expect this work to contribute to existing research and prac-
tice in a few important ways. First, it will advance the understanding
of predictive model portability in education by quantifying the risks
associated with cross-context model deployment and identifying
strategies to mitigate these risks. Second, it will contribute empiri-
cal research on responsible Al by addressing fairness and privacy
concerns simultaneously in transfer learning. Third, it will advance
more equitable scholarship on college retention prediction by fo-
cusing on community colleges which have a higher demand for
predictive analytics but are understudied in existing research.

2 Related Work

2.1 Trustworthy Transfer Learning

Transfer learning has emerged as a powerful technique in the field
of machine learning, which enables models to leverage knowledge
from one domain or task to improve performance on another. This
approach has been particularly successful in fields such as image
processing and natural language processing [14, 15, 41]. The core
idea behind transfer learning is to utilize the knowledge gained
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from a well-studied problem with abundant data to address a related
problem with limited data. This method not only enhances model
performance but also reduces the need for extensive data collection
and labeling, which can be both time-consuming and costly [19].

As transfer learning applications expand into sensitive and high-
stakes fields such as healthcare, education, and finance, researchers
have started to focus their attention on the trustworthiness of the
technical strategies in real-world contexts. Two prominent aspects
of trustworthiness are fairness and privacy. Algorithmic fairness
refers to the principle that machine learning models should pro-
vide equitable outcomes and benefits across different demographic
groups [25]. In transfer learning, the challenge of fairness arises
from potential demographic disparities between the source domain,
where the model is trained, and the target domain, where it is ap-
plied. These disparities can lead to models that perform inequitably
for certain groups in the target domain, resulting in biased decision-
making [31]. Various methods have been proposed to mitigate fair-
ness issues in the transfer learning process across different fields
[7, 24, 25, 30], but these approaches largely focus on single sensitive
groups, such as race or gender, without addressing the complexi-
ties of intersectionality which considers the compound and unique
challenges faced by individuals with intersecting identities [18].

Privacy poses another ethical and technical challenge within the
context of transfer learning. Different fields have distinct privacy
constraints. For example, in education, privacy and data protection
are regulated by legislation such as the Family Educational Rights
and Privacy Act (FERPA), which generally prohibits the disclosure
of personally identifiable information from student records with-
out written consent [35]. In general, the primary privacy concern
in transfer learning is to preserve the privacy of source domain
data. Recent work on source-free domain adaptation (SFDA) ad-
dresses privacy and data sharing concerns by adapting a pre-trained
model to a new target domain without requiring access to source
domain data [40]. Researchers have demonstrated its success in
computer vision [22, 37], but the application of this strategy in
real-world problems remains limited. In addition, online learning,
which involves continuously updating the model as new data be-
come available and allows real-time adaptation to changing data
distributions [13], has been used to formulate transfer learning
under the term of “online transfer learning” [42]. In the process of
developing transfer models, this approach can simulate scenarios
of cross-context collaboration without violating privacy, such as
sharing model weights instead of source data to collaboratively
build a more effective transfer model.

2.2 Transfer Learning in Educational Predictive
Modeling

Model portability has been one of the key challenges in learning
analytics [10]. Early empirical work revealed how educational pre-
dictive models may fail to perform cross different instructional, in-
stitutional, and social contexts. For example, [28] found that models
for detecting students’ affective states in tutoring systems strug-
gled to generalize across student populations, particularly when
rural students were the target population. [21] examined the appli-
cation of academic achievement prediction models trained on US
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datasets in less developed countries and found significant perfor-
mance drops.

More recently, researchers have started to examine the mecha-
nisms and potential solutions to the issue of model portability, some
of whom have formally taken the perspectives of transfer learning.
One of the primary barriers to effective model transfer lies in the dif-
ferences between the source and target contexts, and [38] proposed
an analytical pipeline to understand how contextual differences
moderate the portability of course-level performance prediction
models. In terms of strategies to improve model portability, [34] ex-
plored three transfer learning methods with different model inputs
and training paradigms in the context of early success prediction
in MOOCs, and found that models with course information had the
most satisfactory performance. In our context of college retention
prediction across institutional contexts, [23] addressed contextual
differences by using an instance weighting strategy to adjust the
source model based on the distribution characteristics of the target
institution. While this approach improved the overall goodness-
of-fit of the transferred model, it requires access to both source
and target data, which poses challenges under common privacy
constraints. [9] explored a handful of model ensemble strategies
across institutions without data sharing and showed some promise
in improving model transfer when institutional characteristics are
not substantially different.

Despite the existing efforts, the potential of transfer learning is
still underexplored in the context of educational predictive mod-
eling. Informed by the accomplishments and limitations of prior
research, this study presents a comprehensive evaluation of both
ethical risks and improvement strategies when predictive models
are transferred across educational contexts.

2.3 College Retention Prediction

Over the past few decades, predicting college retention has become
a critical area of research in higher education. Researchers have
leveraged various data sources, such as institutional administrative
data, digital footprints, and survey data, along with cutting-edge ma-
chine learning techniques, to identify students at risk of dropping
out [2, 5, 11, 39]. Current research on this topic across different
countries and institutions has shown promising results in accu-
rately predicting college retention for different student populations
at different time points. However, most research is conducted in the
context of research-intensive institutions which tend to be more
selective and suffer less from retention problems. By contrast, less
selective and under-resourced institutions, such as community col-
leges in the United States, are extremely underrepresented in the
literature. This is particularly concerning as community colleges
and their counterparts in other countries primarily serve socioe-
conomically disadvantaged populations such as racial minorities
and low-income students who face greater challenges in achieving
academic success and are more likely to drop out of college. Accord-
ingly, these colleges are in greater need of the support that retention
prediction models can provide. The limited literature in community
college contexts has examined performance and fairness in college
retention prediction and found that underserved populations may
benefit less from predictive models, further underscoring the need
for equitable and effective predictive approaches [5, 6]. Related to
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such challenges, [9] explored cross-institutional transfer of predic-
tive models to inform collaboration between research-intensive
universities and under-resourced institutions in model develop-
ment, although they did not empirically evaluate the approaches in
under-resourced community colleges.

3 Study Context

We focus on the problem of student retention prediction at commu-
nity colleges, which may benefit the most from predictive analytics
due to their high proportion of minority and underprepared stu-
dents and low retention rates [26]. Similar to [9], we envision a
collaborative model development paradigm where a community
college can deploy externally trained predictive models. A source
institution is one whose data is part of the training data of the de-
ployed model(s), whereas a target institution is the one that deploys
the trained model(s). Given our focus on community colleges, target
institutions are always community colleges but source institutions
can be of any type. There is never data sharing across institutions
in line with existing data laws and regulations, although third-party
model developers (e.g., a vendor or inter-university consortium)
may have simultaneous but separate access to data from multiple
institutions in model development. All the analyses in this paper
are performed in this context.

4 Data and Methods
4.1 Data Sources

4.1.1 Administrative Records. Through existing research partner-
ships, we gained access to detailed administrative records at four
public research universities located across three states of the United
States and 23 community colleges within a southeastern state. These
records came from student information systems (SIS) and included
individual students’ background characteristics as well as academic
records in college. For this paper, we restricted the sample to first-
time, first-year students entering college in Fall terms between 2013
and 2019, covering over 800,000 students in total. For this study,
we purposefully excluded more recent student cohorts whose ex-
perience was complicated by the COVID-19 pandemic. Based on
these raw administrative records, we created a shared schema of

common variables across the 27 institutions®.

4.1.2  Contextual Factors. We collected institutional-level contex-
tual factors from the Integrated Postsecondary Education Data
System (IPEDS) 3, a comprehensive data collection and analysis
system for higher education in the United States, managed by the
National Center for Education Statistics (NCES). IPEDS serves as
the primary source of detailed information on colleges and univer-
sities, covering a wide range of aspects such as enrollment, gradu-
ation rates, student demographics, faculty composition, finances,
institutional costs, and financial aid. For this study, we included
64 variables across six categories for all 27 institutions: school

2The shared schema can be found at https://github.com/AEQUITAS-Lab/Transfer-
Learning-LAK-2025/blob/main/Table1-Data-Schema.csv
Shttps://nces.ed.gov/ipeds
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characteristics, academic compositions, demographic composition,
completion rates, cost, and financial aid?.

4.2 Prediction Task

Our central technical task is predicting first-year retention, defined
as whether a student who enters an institution for the first time
in the fall will re-enroll at the same institution the following fall.
This definition aligns with the National Student Clearinghouse’s
standard for retention [8]. The predictors include student-level
variables specified in the shared schema.

In general, we include students entering college between 2013
and 2018 in the training set and reserve those entering in Fall 2019
for testing purposes. Given our focus on community colleges, the 4
research universities are only used for training but not for testing.
The specific training and testing data vary across transfer learning
strategies explored in this study, as detailed in the next subsection.

4.3 Transfer Learning Strategies

We assume that transfer learning has the potential to help com-
munity colleges more responsibly take advantage of predictive
analytics, as many of them lack the capacity to develop local mod-
els or simply rely on vendors’ models trained elsewhere. Therefore,
we evaluate the following technical transfer learning strategies as
well as some of their combinations that can be adopted by target
institutions or model developers. As a baseline comparison, we also
include an “ideal local” strategy.

Ideal Local: A local model is trained using historical data from
the same target institution on which it is evaluated.

Direct Transfer: A model is trained using data from a source
institution and then evaluated on a different target institution.

Sequential Training: The process begins with training a model
on the source institution’s data. The trained model’s weights are
then transferred to another institution to perform another round
of training. Finally, the model is evaluated on the target institution.
To prevent catastrophic forgetting during the sequential training
process, we implement the Elastic Weight Consolidation (EWC)
strategy [16]. For instance, EWC helps the model retain prior knowl-
edge (e.g., from the first training institution) while training on
subsequent datasets (e.g., the second training institution).

Source-Free Domain Adaptation (SFDA): SFDA is advanta-
geous for addressing data distribution shifts under privacy con-
straints, as it enables adaptation to new target domains without
directly accessing source data, thereby preserving data privacy. In
this study, we explore three benchmark methods within the SFDA
framework:

e Source Hypothesis Transfer (SHOT) [22]: SHOT adapts
the feature extractor to the target domain while keeping the
classifier fixed, using self-supervised pseudo-labeling and
information maximization to align target domain with the
source hypothesis.

e TENT [37]: TENT adapts a model during test time by min-
imizing the entropy, updating the batch normalization pa-
rameters without requiring labeled data.

4The details of these variables can be found at https://github.com/AEQUITAS-
Lab/Transfer-Learning-LAK-2025/blob/main/Table2-Institutional-Contextual-
Factors.csv
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e Pseudo-Labeling [20]: Pseudo-labeling assigns labels to
unlabeled target data based on the predicted probability,
using these confident predictions to adapt the model to the
target domain.

Customized evaluation thresholds: In the model evaluation
stage, we propose two customized evaluation threshold methods:
one based on the institution’s overall historical outcome statis-
tics (overall-optimal) and the other utilizing demographic-specific
thresholds derived from the historical outcome statistics of individ-
ual groups (group-optimal).

In this study, we employed a fully connected neural network
model, consisting of a feature extractor, a bottleneck layer, and a
classifier, to perform the binary prediction task, which is suitable
for all strategies mentioned above.

The workflow of utilizing these strategies is as follows: In RQ1,
we evaluate the risks associated with direct transfer by analyzing
the contextual similarity (discussed in section 4.4.3) between source
and target institutions. For RQ2, we use contextual similarity to
guide model selection and employ sequential training to improve
model adaptation across institutions. In RQ3, we apply SFDA meth-
ods and implement customized evaluation threshold methods to
assess and enhance the performance of transfer models in the target
institution.

4.4 Key Metrics

4.4.1  Performance and Fairness. In binary predictive analysis, vari-
ous performance metrics have been proposed in the literature, each
focusing on different dimensions of model evaluation. Widely used
metrics, such as those derived from the confusion matrix, require
the selection of a specific decision threshold. However, determining
a universally applicable threshold for various training and test in-
stitutions poses a big challenge, particularly when there are shifts
in data distributions. In such cases, the use of a default threshold
may lead to suboptimal performance. Therefore, we adopt the Area
Under the Receiver Operating Characteristic Curve (AUC) as
a primary metric for model evaluation, which is formally defined
as:

1
AUC(f(0)) = /0 TPR(FPR(f;(6))) dt

where t is a prediction threshold of the model with the decision rule
f:(0,x) = 11if f(6,x) > t, and TPR, FPR stands for true positive
rate and false positive rate respectively. AUC scores range from 0
to 1, with higher scores indicating a better ability to distinguish
between positive and negative classes, while a random guess will
achieve an AUC score of 0.5. AUC offers a threshold-independent
assessment of the model’s discriminative power by evaluating its
performance across all possible thresholds.

To measure the difference in predictive performance under cross-
institutional transfer, we employ AAUC [9], defined as AAUC(T, T’) =
AUC(T) — AUC(T’), where AUC(T) refers to the AUC of a model
trained using a transfer scheme T. AAUC allows us to quantify the
performance difference between various transfer learning schemes.
AAUC = 0 indicates that the model performs equally well under
both schemes. A positive AAUC suggests the model performs bet-
ter in context T’ than in T, while a negative AAUC indicates the
opposite. Mostly in this study, we evaluate the direct transfer model
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performance drop compared to the ideally local model, which is
AAUC(local, -).

To evaluate fairness across subgroups and account for intersec-
tionality, we employ the concept of AUC Gap, as introduced by
(9]:

nax [En, [£(0(Dig)] - Bo, [FODeg )]

where Dy ; and Dy indicate the subset of the data in group g and
g’, respectively. The AUC Gap quantifies the maximum disparity
in AUC scores among subgroups, representing the worst-case per-
formance differential within a set of subgroups. In this study, we
employ this method to examine the intersectional group based on
gender and underrepresented minority (URM) status.

During model evaluation stage, we propose strategies for deter-
mining customized thresholds for individual test sets. Since AUC is
threshold-independent, we measure the overall model performance
with the Matthews Correlation Coefficient (MCC) which ac-
counts for the balance between true positives, false positives, true
negatives, and false negatives. In addition, given that retention
interventions such as early warning systems often emphasize early
identification of students at risk of dropping out, we consider Speci-
ficity in our evaluation. Specificity measures the proportion of
actual negatives (students who are at risk of dropping out) that are
correctly classified by the model.

To evaluate fairness when AUC Gap is not applicable, we use
Equalized Odds (EO), which measures the parity of the true posi-
tive rate (TPR) and true negative rate (TNR) between two groups,
A =0and A = 1. To derive an overall EO score, we compute the EO
TPR and EO TNR separately for each group, then take their average
to obtain a comprehensive measure of fairness.

ITPR(4=0) — TPR(4=1)| + ITNR(4=0) — TNR(4=1)|

EO(4) =
A 3

In this part, we focus on two demographic categories—race and
gender—which are commonly used in evaluating algorithmic fair-
ness. Specifically, we assess fairness between underrepresented
racial minorities (URM) vs. non-URM and female vs. male.

4.4.2  Distributional Difference. In this study, we utilize the per-
formance distribution to assess the overall performance across all
target institutions. To evaluate the differences between distribu-
tions, we employed the Wasserstein distance, which is a measure
of the distance between two distributions and is defined as:

W(P,Q) = '/_ |Fp(x) - FQ(x)l dx

where Fp(x) and Fp(x) are the cumulative distribution functions
(CDFs) of the probability distributions P and Q. However, the
Wasserstein distance does not have an absolute reference value
for evaluation. Existing studies suggest that it should be interpreted
relative to the range of the data in order to provide meaningful
insights [36]. In this study, we define a 5% of the data range as the
threshold for a "small" Wasserstein distance, known as Wasserstein
Threshold for Notable Distribution Difference (WTNDD). If
the WTNDD passed, it indicates no notable difference between the
distributions. Conversely, if WTNDD failed, it suggests a notable
difference between the distributions.
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4.4.3 Contextual Similarity. As noted in Section 4.1.2, we collect
contextual factors for each institution across six categories. We
calculate the similarity scores for each category for each pair of
institutions using Gower’s distance [12], a metric well-suited for
mixed data types. The similarity scores are normalized to fall within
the range of 0 to 1 for consistency across categories.

To construct an overall similarity score between source and
target institutions, we utilize the results of a regression analysis
on AUC Drop (AAUC(local, -)) (see Section 5.1 for more details).
Specifically, we apply the “Coefficient-Significance Weighted
Similarity Method”, which assigns weights to each similarity
category based on the regression coeflicients and their statistical
significance. The weight for each similarity measure i is calculated
as:

_ 1A

(1+pi)
where f; is the regression coefficient for category i, and p; is its
p-value. This weighting method reduces the influence of variables
with lower statistical significance while emphasizing variables with
greater impact. The weights were normalized so that their sum
equals 1. Using these normalized weights, the overall similarity
score between source and target institutions is computed as:

i

Wi - X;

n
Xoverall =
i=1
where X; represents the normalized similarity score for category i,
and W is the corresponding weight.

5 Results
5.1 Risks of Direct Transfer

InRQ1, we examine the risks of performance and fairness associated
with directly transferring a model developed in a different context.
Figure 1 (left) shows the AUC for direct transfer models trained on
each source institution and applied to each target institution. The
results demonstrate substantial variability in direct transfer AUC
performance depending on the source institution. Figure 1 (right)
shows the AUC Gap of these models across target institutions. The
results indicate that source models face differing levels of fairness
challenges.

To assess under which conditions model transferability is more
vulnerable, we examine the relationship between contextual simi-
larity and model portability by regressing two metrics - AUC Drop,
AAUC(local, -), and fairness disparity, AUC Gap - on similarity
scores across different contextual categories between the source
and target institutions. The regression equations are defined as
follows:

6 6
AAUC(local,-) = fo + Z BiXi+e, AUC Gap = o + Z BiXi+e
i=1 i=1
where X; represents the similarity score of each category as dis-
cussed in section 4.4.3. Figure 2 (left) shows that models perform
better, with smaller AUC drops, when the source and target institu-
tions are more similar in terms of school, academic, demographic,
and completion factors. Figure 2 (right) shows that greater simi-
larity between source and target institutions in school, academic,
and cost factors reduces the AUC gap, indicating improved fairness.
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Figure 1: Test AUC (left) and AUC Gaps (right) of pre-trained models for each target institutions. Blue circles represent the
tested metrics of pre-trained direct transfer models for each target institution, while red squares indicate the tested metrics of
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Figure 2: Association between contextual similarity metrics and AUC Drop (left) and AUC Gap (right). A negative coefficient
indicates a reduction in the AUC Drop or AUC Gap. Error bars represent 95% confidence intervals.

However, higher similarity in completion factors tends to increase
the AUC gap. Notably, the regression model for AUC Drop has an
R-squared value of 0.600, while the R-squared value for the AUC
Gap regression is only 0.056. This implies that while performance
degradation is strongly influenced by differences in contextual fac-
tors between institutions, fairness change is more complex and less
predictable based on the examined variables.

Following the regression results for AUC Drop, we calculate an
overall similarity score for each pair of source and target institu-
tions using Coeflicient-Significance Weighted Similarity Method
discussed in section 4.4.3. Since cost similarity tends to enlarge the
AUC drop, we drop it from calculating the overall similarity. Figure 3
illustrates the relationship between overall similarity and three key
metrics: Test AUC, Inverted AUC drop, and AUC Gap. The left two
plots demonstrate a positive linear trend, indicating that higher
overall similarity between institutions is associated with improved
AUC scores and a reduced performance drop. Notably, when over-
all similarity falls below 0.5, the model tends to experience more
pronounced performance issues. Additionally, two distinct clus-
ters emerge within the ranges of 0.15-0.45 and 0.65-0.95, each
characterized by relatively low internal variance. In contrast, the

743

relationship between overall similarity and fairness, as measured by
AUC Gap, exhibits a largely flat trend with a slight negative slope.
This suggests that overall similarity exerts minimal influence on
AUC Gap, consistent with the coefficient of determination results
observed in previous analyses.

5.2 Transfer Learning Strategies in Model
Training and Selection

From a model developer’s perspective, privacy constraints pose
challenges in selecting the most suitable pre-trained model that
they can pass to the target institution. Based on the previous results,
we propose that selecting the most similar school, based on over-
all contextual similarity, can help identify an appropriate model.
The model selected using this method is referred as Most Similar
Training Institution(MSTI) model. Figure 4 demonstrates that, al-
though the distribution of Test AUC derived from the MSTI models
generally underperforms relative to that of the ideal local models
(WTNDD failed), it exhibits a marked improvement over the dis-
tribution of expected AUC obtained from random model selection
(WTNDD failed). This indicates that selecting a model based on
contextual similarity can enhance overall predictive performance
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compared to a randomly chosen model. From the perspective of
each target institution, Figure 5 indicates that the Test AUC from
the MSTI model for 21 out of 23 target institutions exceeds the
expected AUC. However, no significant improvements in fairness
were observed, consistent with our previous conclusions that fair-
ness is less predictable from contextual similarity.

Existing studies have demonstrated that a diverse training set
can help address fairness issues [17]. However, privacy constraints
prevent model developers from combining data from multiple in-
stitutions to create a more diverse training dataset. To tackle this
challenge, we propose a potential solution aimed at improving
model fairness while respecting privacy constraints. First, for each
target institution, we firstly identify the MSTI model. Next, among
other possible training institutions with an overall similarity greater
than 0.6—chosen to avoid performance drops—we use demographic
similarity to select the most demographically dissimilar institution,
labeled as Training Institution 2. Finally, we conduct sequential
training on MSTI and Training Institution 2. The obtained model is
referred as sequential model.

We compare the performance and fairness metrics of the sequen-
tial model with the MSTI model across three fairness thresholds:
when the MSTI AUC gap exceeds 0.00, 0.05, and 0.10. Figure 6 shows
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that sequential training has the potential to improve fairness with-
out compromising performance. The WINDD test for differences
in the Test AUC distributions passed under all three thresholds,
indicating no significant differences in Test AUC distributions be-
tween the MSTI model and the sequential model. In contrast, the
WTNDD test for differences in AUC Gap distributions failed, with
Wasserstein Distances of 0.26, 0.37, and 0.46 for MSTI AUC Gaps
exceeding 0.00, 0.05, and 0.10, respectively. This increasing Wasser-
stein Distance for the AUC Gap reflects a growing distributional
difference, which indicates that the less fair the original model is
(i.e., the larger the AUC Gap), the stronger the ability of sequential
training to mitigate fairness issues.

From the perspective of individual target institutions, Figure 7
shows that for the majority of the selected target institutions (8
out of 11), the AUC Gap decreased when the sequential model was
implemented compared to the MSTI model. However, this reduc-
tion in AUC Gap is occasionally accompanied by a performance
degradation for some institutions. Overall, the results suggest that
sequential training has the potential to improve model fairness
without compromising performance, particularly for models with
higher levels of initial unfairness. Nonetheless, there remains vari-
ance across individual target institutions, which underscores the
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Figure 5: Differences between MSTI’s Test AUC and AUC Gap with expected values across target institutions.

Test AUC (MSTI AUC GAP >= 0.00)

Test AUC (MSTI AUC GAP >= 0.05)

Test AUC (MSTI AUC GAP >= 0.10)

12,5
15
10.0 10.0
275 2 75 210 Test AUC
@ @ @
g S S —— MSTI AUC
a 50 a 5.0 a ---- Sequential AUC
5
2.5 2.5
0.0 0.0 0 £
0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.65 0.70 0.75 0.80 0.85
Test AUC Test AUC Test AUC
AUC Gaps (MSTI AUC GAP >= 0.00) AUC Gaps (MSTI AUC GAP >= 0.05) AUC Gaps (MSTI AUC GAP >= 0.10)
6
6 /\
\ 6
P 24 z
G4 G B4 AUC Gap
< [=4 c
8 8 8 —— MSTI AUC Gap
2 2 5 Sequential AUC Gap

Q
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

AUC Gap AUC Gap

Q
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Q
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
AUC Gap

Figure 6: Distribution of performance and fairness for MSTI model and sequential model. (a) Top: Test AUC distributions when
the source is MSTI model and the sequential model under varying MSTI AUC gap thresholds (>=0.00, 0.05, and 0.10). (b) Bottom:
AUC Gap distributions for MSTI model and sequential model under the same thresholds. Histograms are normalized to have

an area of 1 (density).

need for thorough consideration of the specific contextual and insti-
tutional differences when applying sequential training in practice.

5.3 Transfer Learning Strategies in Model
Evaluation

For our third research question, we aim to investigate how a target
institution can mitigate the risks associated with deploying pre-
trained models. As mentioned in Section 4.3, SFDA offers a strategy
to adapt a model to a new domain without requiring access to either
the original training data or the labeled target dataset. Surprisingly,
Figure 8 shows that SFDA techniques that have demonstrated con-
siderable success in computer vision tasks were not as effective in
predicting student retention rates. In fact, many of these adapta-
tion methods underperformed compared to directly applying the
pre-trained models without any adaptation.

During the evaluation phase of pre-trained models for a tar-
get institution, we compare the use of two customized evaluation
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threshold methods discussed in Section 4.3 with the default thresh-
old to assess their effectiveness. We first compare the distribu-
tional differences in specificity and MCC of direct transfer models
using the default threshold and the two optimal thresholds. Fig-
ure 9 demonstrates that, compared to using the default threshold,
both the group-optimal and overall-optimal threshold methods
improve specificity, enhancing the model’s ability to accurately
identify dropout cases (WTNDD failed). Additionally, the WTNDD
test passed when comparing the specificity distributions of group-
optimal and overall-optimal thresholds, which indicates no sub-
stantial difference between them. In addition, there is no notable
difference in the MCC distributions among using the group-optimal,
overall-optimal, and the default thresholds (WTNDD passed). In
terms of fairness, Figure 10 presents the distributions of Equalized
Odds (EO) scores of direct transfer models for different thresh-
olds applied to male vs. female and URM vs. non-URM groups.
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The results indicate that the use of group-optimal thresholds en-
hances fairness, as evidenced by lower EO scores across gender and
URM/non-URM groups compared to both the default and overall-
optimal thresholds (WTNDD failed). There is no notable difference
in the distribution of EO scores between using the default and over-
all optimal thresholds (WTNDD passed). Our results show that
employing overall-optimal and group-optimal thresholds can ef-
fectively improve the model’s specificity without compromising
overall performance, and employing group-optimal thresholds can
further enhance fairness compared to overall-optimal thresholds.

6 Discussion and Conclusion

In this study, we examine the practical challenges and potential so-
lutions for applying pre-trained models across institutions. We con-
duct the first large-scale empirical investigation of cross-institutional
transfer learning of prediction models across both 4-year universi-
ties and 2-year community colleges. This study advances transfer
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learning in education by proposing actionable strategies to tackle
transferability challenges identified in prior work [21, 38]. For ex-
ample, our findings demonstrate that publicly available contextual
information can effectively guide model selection and decision-
making, even under privacy constraints. Additionally, we mitigate
fairness concerns by proposing potential solutions such as sequen-
tial training to improve fairness from a developer’s perspective
and customizing evaluation thresholds for different groups to en-
hance fairness from a user’s perspective. These strategies align with
broader efforts to mitigate algorithmic bias and promote equity in
predictive modeling [6, 17].

These findings have important implications. For model develop-
ers, our findings show that utilizing public contextual information
facilitates model selection and can lay the groundwork for opti-
mizing model choice under privacy constraints. For practitioners,
our results demonstrate the feasibility of institutional collabora-
tion under privacy constraints, showing that even without sharing
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raw data, it is possible to construct improved models through se-
quential training that benefits diverse population. For educational
researchers, our study addresses a critical gap by focusing on the im-
pact of cross-institutional transfer models on community colleges, a
relatively under-explored area in the field. In addition, by providing
empirical evidence of how these models perform across institutions
with varying resource levels, this research sets the stage for future
efforts to enable resource-rich schools to support under-resourced
institutions through model transfer and adaptation.
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This study has several limitations. First, the models rely on com-
mon data features across institutions, which may exclude some
important indicators due to varying data infrastructures. Second,
the sample includes only research university and community col-
lege in the United States, which may limit the generalizability of the
findings to other institutional types. Future research should address
feature space differences between source and target institutions,
expand the sample to include a wider range of institutions, and
explore applications in other sectors, such as finance and healthcare,
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to further validate transfer learning frameworks in privacy- and
fairness-critical contexts.
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