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Course-Skill atlas: a national 
longitudinal dataset of skills taught 
in U.S. higher education curricula
alireza Javadian Sabet  1, Sarah H. Bana2,3, Renzhe Yu4,5 & Morgan R. Frank  1,3,6 ✉

Higher education plays a critical role in driving an innovative economy by equipping students with 
knowledge and skills demanded by the workforce. While researchers and practitioners have developed 
data systems to track detailed occupational skills, such as those established by the U.S. Department 
of Labor (DOL), much less effort has been made to document which of these skills are being developed 
in higher education at a similar granularity. Here, we fill this gap by presenting Course-Skill Atlas – a 
longitudinal dataset of skills inferred from over three million course syllabi taught at nearly three 
thousand U.S. higher education institutions. to construct Course-Skill atlas, we apply natural language 
processing to quantify the alignment between course syllabi and detailed workplace activities (DWas) 
used by the DOL to describe occupations. We then aggregate these alignment scores to create skill 
profiles for institutions and academic majors. Our dataset offers a large-scale representation of college 
education’s role in preparing students for the labor market. Overall, Course-Skill atlas can enable new 
research on the source of skills in the context of workforce development and provide actionable insights 
for shaping the future of higher education to meet evolving labor demands, especially in the face of new 
technologies.

Background & Summary
Skills are essential components of jobs and shape the career outcomes of workers in the labor market. Therefore, 
systematically studying skills and their sources is essential for predicting workers’ career trajectories and 
macro-level workforce dynamics1–4. For example, recent research finds increasing demand for social skills 
for modern, flexible team-based work environments based on required skills in job postings5. In response to 
shifts in skills, employers need to consider skill profiles and skill development in their hiring and training. For 
instance, employers subjectively perceive the skill content of college majors when determining the requirements 
to include in online job advertisements6. Combined, the focus on skills in the labor market warrants a similar 
perspective on the sources of skills during workforce development and talent acquisition.

Higher education is arguably the most important source of skill development, which facilitates both eco-
nomic and social mobility7. In the past few decades, empirical studies have consistently demonstrated that 
college-educated individuals earn higher wages, achieve more extensive professional networks, and collectively 
experience greater inter-generational upward mobility8,9. Non-college educated workers now engage more in 
less skilled tasks than their counterparts compared to previous eras10 and tend towards low-wage occupations. 
On the other hand, the economic returns of higher education vary across fields of study due to differing skill 
sets imparted by college majors11,12. They also vary because of institutional selectivity13. Moreover, students 
from different demographic and socioeconomic backgrounds are sorted into different educational trajectories 
due to existing structural inequalities, which may hinder the social mobility that higher education is intended 
to foster14. In recent years, as elevated dropout rates15 and rising unemployment or underemployment rates of 
college graduates fuel concerns around the efficacy of higher education16,17, it is important to better understand 
how higher education imparts skills and prepares students for the labor market. This will require moving beyond 
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using degree or credit attainment as proxies for skills, as these proxies fail to capture subtle variations in educa-
tional experiences between students in the same major or institution.

The recent digitization of large-scale data on curricula and job content presents new opportunities to inves-
tigate how skills are developed. Some researchers have started to leverage these new data sources to connect 
higher education and jobs using natural language processing techniques18–25. For example, Börner and col-
leagues20 provided one of the earliest large-scale analysis of the alignment between college courses, job vacan-
cies, and academic research. They leveraged an established skill taxonomy and connected the three pieces via 
skill mentions in their content. More recently, Light19 measures changes in university course offerings over time 
by quantifying the semantic overlap between course descriptions and job postings. This novel line of research 
has provided emerging evidence of mismatches between labor market demands and skills taught in courses, 
as well as the uneven distribution of these mismatches along such dimensions as major areas, institutions, and 
geographical locations.

Despite the important findings, almost all the empirical studies to date acquire educational and job content 
information through proprietary data contracts with private vendors, and few have released their derived data 
about education-occupation alignment, making replication and extension efforts challenging for other research-
ers. In this context, we provide a new algorithmic pipeline and a public dataset to help analyze the skill develop-
ment in American higher education26. We first introduce Syllabus2O*NET, a natural language processing 
(NLP) framework designed to identify and interpret skills from curricular content, in line with the O*NET 
taxonomy27 used by the U.S. Department of Labor (DOL) (see Fig. 1). Applying Syllabus2O*NET to the 
most extensive dataset of university course syllabi, we then present Course-Skill Atlas — a longitudinal, national 
dataset of inferred skill profiles across different institutions, academic majors, and student populations in the 
United States. To validate this dataset, we perform qualitative and quantitative explorations of the identified 
skills in reference to existing studies. We further discuss a handful of potential use cases of Course-Skill Atlas, 
including quantifying skill-salary correlations, analyzing temporal trends in curriculum design, and revealing 
gender skills gaps based on major and institution.

Overall, our provision makes three intellectual and practical contributions. First, we present a computational 
framework to describe the content alignment between education and workforce. While we developed the meth-
odology based on two specific document types, it is applicable to other types of documents as well. Second, we 
provide an essential, public data source on the granular skill profiles of institutions, which can facilitate future 

Fig. 1 The Syllabus2O*NET skill inference framework. This natural language processing framework 
converts a course syllabus into a vector representing its coverage of individual “skills” defined by O*NET 
Detailed Work Activity (DWA) or Task. The pipeline receives a course syllabus as input and segments the 
raw texts into individual sentences. Then, using a curated dictionary, it identifies and keeps sentences related 
to learning content and transforms each sentence into a high-dimensional vector with sentence embedding 
(SBERT). Meanwhile, each skill is vectorized with the same approach. Next, pairwise cosine similarities between 
the embeddings of skills and learning content sentences are computed. Then, each skill’s maximum similarity 
score across the learning content sentences is used to indicate the skill coverage of the syllabus. Finally, the 
results is supplemented with a different O*NET taxonomy: DWA2Ability, a set of 52 Random Forest 
Regressors, that maps the inferred skill coverage to related worker abilities.

https://doi.org/10.1038/s41597-024-03931-8


3Scientific Data |         (2024) 11:1086  | https://doi.org/10.1038/s41597-024-03931-8

www.nature.com/scientificdatawww.nature.com/scientificdata/

research in such fields as higher education, labor economics, and future of work, especially in an era marked by 
rapid technological advancements and shifting economic landscapes28,29. Third, our validation analyses illustrate 
some macro-level patterns of skills taught in higher education that warrant more in-depth research in the future.

Field of Study # Sent. # Learning Sent. % Learning Sent. Field of Study # Sent. # Learning Sent. %Learning Sent.

Accounting 101 15 14.61% Hebrew 65 7 11.32%

Agriculture 60 8 15.11% History 88 9 10.62%

Anthropology 86 13 14.29% Japanese 84 10 13.12%

Architecture 73 14 20.45% Journalism 105 13 12.22%

Astronomy 76 10 12.50% Law 60 7 12.12%

Atmospheric Sciences 66 11 14.29% Library Science 107 13 12.04%

Basic Computer Skills 88 11 13.21% Linguistics 72 9 11.43%

Basic Skills 76 11 14.29% Marketing 106 16 15.79%

Biology 85 12 13.25% Mathematics 75 10 12.73%

Business 97 15 15.22% Mechanic/Repair Tech 62 10 17.95%

Chemistry 83 11 13.16% Media/Communications 107 14 13.73%

Chinese 60 8 12.10% Medicine 95 14 15.79%

Classics 47 4 9.30% Military Science 71 11 14.35%

Computer Science 67 10 14.29% Music 62 8 13.04%

Cosmetology 85 12 15.79% Nursing 95 16 16.95%

Criminal Justice 79 12 15.38% Nutrition 85 12 14.46%

Culinary Arts 61 14 22.22% Philosophy 76 9 12.50%

Dance 59 11 17.54% Physics 61 8 14.19%

Dentistry 69 16 25.93% Political Science 96 12 12.23%

Earth Sciences 59 9 14.29% Psychology 105 16 15.09%

Economics 74 11 13.92% Public Safety 60 10 16.03%

Education 121 23 19.74% Religion 84 11 12.61%

Engineering 51 9 16.28% Sign Language 78 12 15.69%

English Literature 97 11 10.99% Social Work 139 26 19.28%

Film and Photography 68 11 14.88% Sociology 100 14 13.92%

Fine Arts 79 13 15.75% Spanish 95 10 10.60%

Fitness and Leisure 54 10 17.19% Theatre Arts 63 11 17.68%

French 69 7 10.45% Theology 113 16 14.29%

Geography 70 10 14.29% Transportation 94 12 13.46%

German 71 8 11.39% Veterinary Medicine 70 10 11.39%

Health Technician 75 11 16.22% Women’s Studies 81 13 15.19%

Table 1. Sentence statistics per FOS. The table presents the median of the number of sentences (# Sent.), 
the median of the number of identified Learning Objective related sentences (# Learning Sent.), and the 
median percentage of the identified Learning Objective related sentences (% Learning Sent.) per FOS.

Ability MSE Ability MSE Ability MSE Ability MSE

Arm-Hand Steadiness 0.025 Fluency of Ideas 0.014 Number Facility 0.012 Speech Clarity 0.008

Auditory Attention 0.014 Glare Sensitivity 0.017 Oral Comprehension 0.010 Speech Recognition 0.014

Category Flexibility 0.016 Gross Body Coordination 0.013 Oral Expression 0.011 Speed of Closure 0.010

Control Precision 0.019 Gross Body Equilibrium 0.018 Originality 0.014 Speed of Limb Movement 0.020

Deductive Reasoning 0.011 Hearing Sensitivity 0.012 Perceptual Speed 0.012 Stamina 0.019

Depth Perception 0.014 Inductive Reasoning 0.010 Peripheral Vision 0.013 Static Strength 0.024

Dynamic Flexibility 0.007 Information Ordering 0.017 Problem Sensitivity 0.010 Time Sharing 0.013

Dynamic Strength 0.016 Manual Dexterity 0.023 Rate Control 0.019 Trunk Strength 0.017

Explosive Strength 0.016 Mathematical Reasoning 0.011 Reaction Time 0.020 Visual Color Discrimination 0.019

Extent Flexibility 0.019 Memorization 0.013 Response Orientation 0.012 Visualization 0.017

Far Vision 0.011 Multilimb Coordination 0.022 Selective Attention 0.008 Wrist-Finger Speed 0.024

Finger Dexterity 0.015 Near Vision 0.018 Sound Localization 0.025 Written Comprehension 0.012

Flexibility of Closure 0.014 Night Vision 0.015 Spatial Orientation 0.017 Written Expression 0.014

Table 2. DWA2Ability models training performance for each ability. The mean squared error (MSE) 
obtained from the 5-fold cross-validation (CV) for finding the best model of ability.
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institution_fos_year

PK id: integer

year: integer

field_name: string

field_code: string

syllabi_cnt: integer

UnitID: integer

institution_name: string

city: string

state_code: string

sector: string

tasks_scores

PK id: integer

Account for and disburse funds: float

...: float

Write, review, or maintain engineering documentation: float

detailed_work_activities_scores

PK id: integer

Review art or design materials: float

...: float

Monitor resources: float

abilities_scores

PK id: integer

Selective Attention: float

...: float

Visual Color Discrimination: float

Fig. 2 The entity relationship diagram of the skills extracted from U.S. course syllabi. In each table, PK 
represents the table’s primary key. “institution_fos_year” comprise the main data table encompassing 281, 153 
records. For each corresponding id from “institution_fos_year” Table, “task_scores”, “detailed_work_activities_
scores”, and “abilities_scores” tables contain the scores for 17, 992 tasks, 2, 070 DWAs, and 52 abilities 
respectively inferred using Syllabus2O*NET). For brevity, we replaced the remaining tasks, DWAs, and 
abilities with “…”. Lines connecting tables indicate the presence of a relational table.

a b c

Fig. 3 Descriptive statistics of the Open Syllabus Project (OSP) dataset.(a) Percentage of the universities with at 
least eight course syllabi (25th percentile) available per state. (b) Total number of syllabi per year. (c) The syllabus 
count per university across all years and all FOS.

Fig. 4 Syllabi count distribution. The syllabi count distribution of the records (a record is the average score of all 
syllabi belonging to a FOS, year, and institution triplet).
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Field of Study # Syllabi Field of Study # Syllabi Field of Study # Syllabi

Mathematics 258,160 Accounting 51,984 Religion 14,440

English Literature 232,065 Sociology 46,836 French 14,305

Business 201,100 Physics 44,802 Journalism 12,712

Computer Science 184,649 Film and Photography 42,690 Nutrition 11,883

Biology 140,187 Criminal Justice 39,805 Dentistry 10,367

Education 140,182 Spanish 39,650 Culinary Arts 9,430

Fitness and Leisure 131,262 Health Technician 38,268 Sign Language 8,665

Psychology 122,387 Social Work 36,745 German 8,385

History 107,676 Philosophy 35,583 Classics 7,813

Media/Communications 85,561 Agriculture 35,305 Cosmetology 7,291

Music 82,329 Marketing 31,430 Astronomy 7,286

Fine Arts 75,722 Law 31,421 Transportation 7,121

Basic Skills 73,362 Theatre Arts 29,087 Japanese 5,456

Engineering 70,084 Theology 24,584 Women’s Studies 5,237

Political Science 69,111 Public Safety 23,931 Chinese 5,054

Basic Computer Skills 68,028 Earth Sciences 21,870 Linguistics 4,859

Nursing 63,603 Anthropology 21,509 Military Science 3,202

Mechanic/Repair Tech 62,423 Library Science 20,234 Atmospheric Sciences 2,231

Chemistry 61,280 Dance 19,694 Veterinary Medicine 2,105

Economics 56,157 Architecture 19,379 Hebrew 1,674

Medicine 55,161 Geography 17,935

Table 3. Frequency of syllabi by FOS.

State # Syllabi % Syllabi # Inst. % Covered Inst. State # Syllabi % Syllabi # Inst. % Covered Inst.

Alabama 66,548 2.14% 60 48.33% Montana 6,929 0.22% 24 37.50%

Alaska 3,271 0.11% 8 50.00% Nebraska 4,609 0.15% 34 52.94%

Arizona 16,476 0.53% 66 31.82% Nevada 16,541 0.53% 22 31.82%

Arkansas 9,018 0.29% 53 56.60% New Hampshire 3,066 0.10% 24 41.67%

California 553,589 17.80% 425 46.82% New Jersey 38,225 1.23% 82 47.56%

Colorado 18,718 0.60% 62 45.16% New Mexico 28,830 0.93% 36 38.89%

Connecticut 8,695 0.28% 38 65.79% New York 77,699 2.50% 295 43.05%

Delaware 1,737 0.06% 7 57.14% North Carolina 76,644 2.46% 134 41.04%

District of Columbia 13,356 0.43% 22 36.36% North Dakota 4,120 0.13% 20 45.00%

Florida 78,441 2.52% 161 32.92% Ohio 80,494 2.59% 160 42.50%

Georgia 72,955 2.35% 107 42.06% Oklahoma 35,158 1.13% 46 69.57%

Hawaii 19,016 0.61% 17 52.94% Oregon 24,273 0.78% 50 56.00%

Idaho 40,312 1.30% 14 57.14% Pennsylvania 72,515 2.33% 193 48.19%

Illinois 65,455 2.10% 152 55.26% Puerto Rico 40 0.00% 86 2.33%

Indiana 22,389 0.72% 66 57.58% Rhode Island 5,322 0.17% 15 60.00%

Iowa 20,861 0.67% 56 57.14% South Carolina 37,259 1.20% 66 57.58%

Kansas 14,598 0.47% 63 50.79% South Dakota 2,880 0.09% 21 57.14%

Kentucky 49,872 1.60% 59 40.68% Tennessee 23,144 0.74% 83 50.60%

Louisiana 24,547 0.79% 52 42.31% Texas 865,973 27.85% 226 54.42%

Maine 8,252 0.27% 30 46.67% Utah 18,612 0.60% 23 43.48%

Maryland 157,830 5.08% 54 70.37% Vermont 5,722 0.18% 16 62.50%

Massachusetts 36,102 1.16% 106 65.09% Virginia 41,186 1.32% 108 47.22%

Michigan 120,455 3.87% 87 63.22% Washington 45,493 1.46% 72 58.33%

Minnesota 68,253 2.19% 85 55.29% West Virginia 5,836 0.19% 41 34.15%

Mississippi 7,174 0.23% 33 75.76% Wisconsin 23,880 0.77% 67 61.19%

Missouri 47,594 1.53% 93 47.31% Wyoming 19,570 0.63% 9 66.67%

Table 4. Geographical distribution of the OSP dataset. For each U.S. state “# Syllabi” and “% Syllabi” detail the 
number and percentage of course syllabi from the universities and institutions located in that state (the sum of 
“% Syllabi” equals to 100%). “# Inst.” specifies the number of institutions located in the given state based on the 
CCIHE. “% Covered Inst.” specifies the percentage of the number of universities with at least 8 course syllabi 
(25th percentile) in the OSP dataset.
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Methods
Materials. Open Syllabus Project Dataset. Open Syllabus Project (OSP) (https://opensyllabus.org/) is a non-
profit organization that curates a vast archive of over 20.9 million course syllabi from higher education institu-
tions worldwide. The organization aims to map and analyze the curriculum across thousands of institutions, 
providing insights into the most commonly taught texts and subjects. OSP’s syllabi data comes from (i) scraped 
content from universities’ syllabi repositories, (ii) a broad web crawler with seeds from CommonCrawl (https://
commoncrawl.org/) and manual curation, (iii) Internet Archive for 2021 Open Syllabus crawl (https://archive.
org/details/OPENSYLLABUS-20210506220126-crawl804), and (iv) syllabi donation from institutions and indi-
viduals. Through a research contract, we analyze one version 2.1 of the OSP data, which encompasses nearly 8 
million course syllabi worldwide among which 3, 162, 747 syllabi across 62 fields of study (FOS) belong to 2, 761 
colleges and universities in the United States. Each course syllabus contains features such as course description, 
language, year, field of study, and information about the institution. In this paper, ‘major’ and ‘FOS’ are used 
interchangeably.

O*NET. O*NET (Occupational Information Network) (https://www.onetonline.org/) stands as a comprehen-
sive database detailing worker attributes and job characteristics. Developed under the sponsorship of the U.S. 
Department of Labor/Employment and Training Administration, O*NET is essential for in-depth labor market 
and workforce analyses22,30–37. Educators, career counselors, and workforce development professionals lever-
age O*NET for evaluating job requirements against worker qualifications, aiding in curriculum development, 
career guidance, and labor market analysis38. Occupations form the core of the O*NET system, around which a 
standardized hierarchical taxonomy is organized, allowing for detailed analysis and comparison across diverse 
professional roles including: 

•	 Worker Characteristics: These are essential in understanding the potential and capacity of the workforce. 
We specifically focus on:

 — Ability (https://www.onetonline.org/find/descriptor/browse/1.A): The performance of individual 
workers is influenced by their enduring abilities, the most granular component of worker charac-
teristics. There are 52 abilities categorized into four key areas: cognitive, physical, psychomotor, and 
sensory.

•	 Occupational Requirements: These requirements define the specific demands of jobs and are integral to 
occupational definitions within the taxonomy. We analyze:

 — Detailed Work Activity (DWA) (https://www.onetcenter.org/dictionary/20.1/excel/dwa_reference.
html): DWAs are precise descriptions of tasks and responsibilities of specific jobs. There are more than 
2, 000 DWAs across different occupations, which help understand the day-to-day activities and skills 
required for a particular role.

 — Task Statement (https://www.onetcenter.org/dictionary/20.1/excel/task_statements.html): Task is the 
basic unit of work. There are nearly 18, 000 tasks in total, which provide the most detailed overview of 
job responsibilities.

Through its multidimensional taxonomy centered around occupations, O*NET not only facilitates a detailed 
understanding of job roles but also significantly aids in bridging educational preparation with labor market 
demands. This structure makes it an invaluable tool for policymakers, educators, and employment specialists. 
By focusing on occupations, O*NET enables a targeted analysis of the workforce, enhancing the relevance and 
applicability of labor market data in various professional settings.

Skill inference Framework (Syllabus2O*NET ). Figure  1 provides an overview of our 
Syllabus2O*NET skill inference framework. This framework leverages natural language processing to esti-
mate skill coverage in curricular content. Syllabus2O*NET begins by taking the raw texts of a course syllabus, 
which typically include course logistics (e.g., scheduling and grading rubrics) and learning content (e.g., learning 
objectives).

Sector # Syllabi % Syllabi

Public, 4-year or above 1,478,045 52.60%

Public, 2-year 813,214 28.94%

Private not-for-profit, 4-year or above 420,283 14.96%

Not Classified 97,307 03.46%

Private for-profit, 4-year or above 1311 00.05%

Private not-for-profit, 2-year 31 00.00%

Private for-profit, 2-year 17 00.00%

Table 5. Frequency and percentage of syllabi by university sector.
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We then use Stanza39 to partition the raw texts into individual sentences. Stanza leverages pre-trained neural 
network models to syntactically parse documents into sentences across diverse contexts and languages and 
has been shown to work even in the presence of complex punctuation and formatting39. This tool helps extract 
322, 473, 524 sentences from the 3, 162, 747 course syllabi in the OSP dataset. On average, each syllabus contains 
101.96 sentences (median 83).

Institution Name Count Institution Name Count

Alamo Colleges 160,041 South Texas College 12,009

University of Maryland University College 137,257 Dallas County Community College District 11,641

Amarillo College 75,198 Monterey Peninsula College 11,258

Lansing Community College 63,945 University of Minnesota System 11,220

University of Alabama, Tuscaloosa 54,278 South Plains College 11,184

Texas State Technical College 48,291 Wilkes University 11,036

Clark State Community College 46,094 Bellevue College 10,935

Houston Community College System 45,401 Reedley College 10,785

Santa Rosa Junior College 35,621 Modesto Junior College 10,780

Texas A&M University 33,579 University of Texas Rio Grande Valley 10,653

Rowan-Cabarrus Community College 33,403 University of Southern California 10,480

North Idaho College 31,292 Kentucky Community and Technical College System 10,264

University of Texas at Dallas 30,922 Santa Barbara City College 10,232

University of Georgia 30,349 Fullerton College 9,993

Texas State University-San Marcos 30,051 Pennsylvania State University 9,303

University of Texas at Arlington 28,651 Lewis and Clark Community College 9,103

San Diego Community College District 27,768 Southwestern Community College 9,004

Western Kentucky University 27,684 Chaminade University of Honolulu 8,866

Park University 27,096 Great Basin College 8,837

Sam Houston State University 26,523 University of Akron 8,787

Stephen F. Austin State University 26,170 University of California, San Diego 8,746

University of Michigan-Ann Arbor 25,883 University of Washington 8,707

Midwestern State University 25,460 Nova Southeastern University 8,555

Fresno City College 24,786 University of Colorado Boulder 8,553

George Mason University 24,046 Rutgers University 8,494

Oral Roberts University 23,950 University of South Florida 8,193

San Jose State University 23,505 San Mateo County Community College District 8,124

Minnesota State Colleges and Universities System 23,112 Palomar College 8,112

Texas Tech University 22,812 Westmont College 8,068

McLennan Community College 22,561 Mt. San Jacinto College 8,015

University of California, Irvine 22,505 Stony Brook University 7,982

Galveston College 22,077 New York University 7,959

Tyler Junior College 20,986 Victoria College 7,919

Clemson University 20,453 Iowa State University 7,885

University of Texas at Austin 20,387 University of Maryland, College Park 7,842

Collin College 17,608 Butte College 7,728

New Mexico Junior College 16,635 Merced College 7,388

Hartnell College 16,522 Ventura County Community College District 7,368

University of Texas at El Paso 15,842 Alvin Community College 7,347

Loyola University New Orleans 15,830 Ohlone College 7,240

University of North Texas 15,680 Imperial Valley College 7,174

University of Florida 14,919 Chaffey College 7,076

Casper College 14,665 Santa Monica College 6,870

University of Texas at San Antonio 14,595 California State University, San Marcos 6,865

University of Houston-Clear Lake 14,386 Palm Beach State College 6,742

Angelo State University 13,663 Carnegie Mellon University 6,702

Excelsior College 13,517 El Paso Community College 6,624

Texas A&M University-Commerce 13,264 Massachusetts Institute of Technology 6,329

Princeton University 13,182 Florida International University 6,287

Santa Ana College 12,969 Napa Valley College 6,224

Table 6. Most frequent universities. The syllabus count per top 100 universities across all years and all FOS.

https://doi.org/10.1038/s41597-024-03931-8


8Scientific Data |         (2024) 11:1086  | https://doi.org/10.1038/s41597-024-03931-8

www.nature.com/scientificdatawww.nature.com/scientificdata/

Because not all sections of a syllabus reflect the subject matter and covered skills of the course, a 
human-in-the-loop approach is deployed to remove sentences pertaining to course logistics while keeping sen-
tences about learning content. To do so, we compiled two distinct lists of keywords for labeling sentences: one 
for course logistics, which includes 356 phrases (e.g., “plagiarism,” “attendance,” and “office hours”), and another 
for learning content, which includes 51 phrases (e.g., “analyze,” “versus,” and “outcome”). The complete lists 
can be found on “course_logistics_terms” and “learning_content_terms” files on Figshare26 and on the project’s 
GitHub page. We removed sentences from each syllabus that contained phrases related to course logistics or that 
lacked language related to learning content, resulting in the removal of 85.82% of the sentences in the raw data. 
After this cleaning process, each syllabus on average contains 17.61 learning content sentences (median = 12) 
(see Table 1 for details on the statistics of “learning content” sentence counts by FOS).

Next, we compute the semantic similarity between each O*NET DWA or Task (hereafter, “skill”) and each 
sentence in a syllabus. SBERT40, a neural language model with a Siamese network structure, is used to convert 
a sentence into a fixed-size vector (also called “embedding”) that encodes its semantic meaning. We choose 
SBERT over alternative language models due to its diverse training corpora, faster computation, and supe-
rior performance on benchmark tasks. SBERT is trained on a diverse range of more than 1 billion sentences 
including S2ORC: The Semantic Scholar Open Research Corpus41, WikiAnswers Corpus42, PAQ: 65 Million 
Probably-Asked Questions43, and GooAQ: Open Question Answering with Diverse Answer Types44. Specifically, 
we implement the “all-mpnet-base-v2” model45 to embed each “learning content” sentence in course syllabi and 
each skill descriptor into a 768-dimension semantic space. Pairwise cosine similarity between these embeddings 
are calculated to measure semantic similarity between learning content and skills. For instance, “understand the 

Fig. 5 Frequency of syllabi per field of study between 2000 and 2017.
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metrics that describe the various properties of a network be able to identify the crucial metrics to be examined 
for a variety of different network analysis tasks” (in Fig. 1) is semantically similar to the O*NET DWA “develop 
scientific or mathematical models,” with a cosine similarity of 0.9.

Finally, we create a vector for each syllabus to measure how much each skill is covered in the course, based on 
the semantic similarities. Specifically, for a given skill, we select the maximum similarity score across all the sen-
tences within the syllabus (i.e., the score of the most similar sentence). This approach captures the most relevant 
skill information each course aims to develop and is particularly robust for handling the significant variations 
in syllabi’s length, detail, and structures. With this construction, the syllabus vectors have 2,070 dimensions for 
DWAs and 17,992 for Tasks.

Some studies might aim at depicting the competencies of workers and do not have detailed information 
about jobs. In line with this use case, we further establish the connection between learning content and O*NET 
abilities by mapping inferred skills to abilities. Because O*NET does not provide a standardized crosswalk link-
ing DWAs, tasks, and abilities, we create a subprocess DWA2Ability to achieve this. We start with the O*NET 
database profiles of DWAs for each occupation. Next, we extract importance scores of each O*NET ability within 
each occupation. We formulate a map between the two sets of occupation profiles as a regression using DWAs as 
independent variables and ability scores as dependent variables. We train a Random Forest Regressor46 for each 
ability and fine-tune hyperparameters via Grid Search and 5-fold cross-validation. This approach yielded 52 
models (i.e., one per O*NET ability), each achieving mean squared error of at most 0.025 (see Table 2 for details 
on model performance). Using the trained models, we map syllabi’s DWA scores to abilities. If a syllabus does 
not teach content that provides the students with a certain ability, the corresponding ability score is 0.

Negative values in cosine similarity. To determine how much each skill is covered in a course, we calculate the 
cosine similarity between the skill and each sentence in a syllabus. Cosine similarity ranges from  − 1 to 1, where 
a value of 1 indicates that the two vectors (or sentences in this context) are perfectly aligned and have the same 
direction, while a value of  − 1 indicates that the vectors are diametrically opposed. In general, a negative cosine 
similarity value suggests that the two sentences are not only dissimilar but also convey opposite or contrasting 
meanings. However, in the context of skill inference, the meaning of dissimilarity might not always be appli-
cable. For example, the top five DWAs with the most negative values include “Trim trees or other vegetation,” 
“Adjust the tension of nuts or bolts,” “Install carpet or flooring,” “Install trim or paneling,” and “Apply sealants 
or other protective coatings.” In the output of our Syllabus2O*NET pipeline, fewer than 10 DWAs have 
negative values in more than 5% of the syllabi, with the highest being 7.17%. For transparency and flexibility, we 
have kept these negative values as they are in the released aggregated datasets, allowing users to take appropriate 
actions according to their specific needs (e.g., change them to zero or normalize them).

Fig. 6 Frequency of syllabi per FOS according to 2-digit CIP 2010 taxonomy between 2000 and 2017.
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Field of Study

Duplicates Within a University-Major  
Combination (Total)

Duplicates Within a University-Major-Year 
Combination (Within Year)

Duplicates Across Years (Total 
- Within Year)

Number Percentage Number Percentage Number Percentage

Library Science 12,626 64.82% 11,985 61.53% 641 3.29%

Transportation 3,544 56.11% 3,050 48.29% 494 7.82%

Public Safety 10,987 48.91% 9,525 42.40% 1,462 6.51%

Mechanic / Repair Tech 25,092 46.58% 20,504 38.06% 4,588 8.52%

Culinary Arts 3,665 41.95% 2,929 33.53% 736 8.42%

Health Technician 13,711 41.41% 11,019 33.28% 2,692 8.13%

Cosmetology 2,870 40.80% 2,243 31.89% 627 8.91%

Basic Computer Skills 24,240 40.65% 20,633 34.61% 3,607 6.04%

Basic Skills 25,887 39.81% 22,071 33.94% 3,816 5.87%

Japanese 1,971 39.55% 1,601 32.12% 370 7.43%

Dentistry 3,440 39.40% 2,897 33.18% 543 6.22%

Criminal Justice 14,208 38.03% 11,534 30.87% 2,674 7.16%

Fitness and Leisure 45,192 37.65% 34,921 29.09% 10,271 8.56%

Music 26,393 37.13% 19,150 26.94% 7,243 10.19%

Sign Language 2,454 36.74% 1,920 28.75% 534 7.99%

German 2,899 36.56% 2,283 28.79% 616 7.77%

Atmospheric Sciences 760 35.70% 566 26.59% 194 9.11%

Military Science 1,070 35.64% 842 28.05% 228 7.59%

Mathematics 79,952 35.40% 64,279 28.46% 15,673 6.94%

Spanish 12,352 34.92% 10,086 28.51% 2,266 6.41%

Nursing 19,529 34.52% 16,520 29.20% 3,009 5.32%

Dance 5,824 34.48% 4,313 25.54% 1,511 8.94%

English Literature 71,645 34.41% 63,061 30.28% 8,584 4.13%

Nutrition 3,590 33.39% 2,868 26.68% 722 6.71%

Accounting 15,836 32.59% 12,447 25.61% 3,389 6.98%

Business 61,178 32.22% 49,171 25.90% 12,007 6.32%

Computer Science 53,616 32.20% 42,614 25.59% 11,002 6.61%

Media / Communications 24,793 31.92% 20,681 26.63% 4,112 5.29%

Agriculture 9,459 31.74% 6,387 21.43% 3,072 10.31%

Astronomy 1,841 31.49% 1,374 23.50% 467 7.99%

Biology 39,526 31.36% 30,387 24.11% 9,139 7.25%

Fine Arts 21,049 30.81% 16,321 23.89% 4,728 6.92%

Medicine 15,591 30.63% 12,420 24.40% 3,171 6.23%

French 3,931 29.97% 2,962 22.58% 969 7.39%

Earth Sciences 5,946 29.74% 4,226 21.14% 1,720 8.60%

Chemistry 16,349 29.72% 11,917 21.67% 4,432 8.05%

Physics 11,255 29.14% 8,148 21.10% 3,107 8.04%

Theatre Arts 7,853 28.94% 6,142 22.63% 1,711 6.31%

Chinese 1,337 28.83% 1,003 21.63% 334 7.20%

Film and Photography 11,182 28.48% 8,784 22.37% 2,398 6.11%

History 26,505 27.77% 21,129 22.14% 5,376 5.63%

Law 7,545 27.41% 5,542 20.14% 2,003 7.27%

Veterinary Medicine 370 26.93% 270 19.65% 100 7.28%

Engineering 17,067 26.91% 12,318 19.42% 4,749 7.49%

Marketing 7,965 26.64% 6,150 20.57% 1,815 6.07%

Sociology 11,411 26.57% 9,199 21.42% 2,212 5.15%

Religion 3,509 25.03% 2,792 19.91% 717 5.12%

Psychology 28,009 24.83% 21,883 19.40% 6,126 5.43%

Classics 1,717 24.72% 1,110 15.98% 607 8.74%

Economics 12,356 24.14% 8,904 17.40% 3,452 6.74%

Social Work 8,340 23.01% 6,806 18.78% 1,534 4.23%

Geography 3,681 22.64% 2,550 15.68% 1,131 6.96%

Philosophy 6,881 22.04% 5,391 17.27% 1,490 4.77%

Political Science 13,088 21.37% 10,097 16.49% 2,991 4.88%

Hebrew 334 20.99% 185 11.63% 149 9.36%

Continued
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Field of Study

Duplicates Within a University-Major  
Combination (Total)

Duplicates Within a University-Major-Year 
Combination (Within Year)

Duplicates Across Years (Total 
- Within Year)

Number Percentage Number Percentage Number Percentage

Journalism 2,552 20.51% 1,871 15.04% 681 5.47%

Anthropology 3,993 19.94% 3,175 15.86% 818 4.08%

Education 26,628 19.70% 21,342 15.79% 5,286 3.91%

Architecture 3,115 17.76% 2,303 13.13% 812 4.63%

Women’s Studies 872 17.38% 726 14.47% 146 2.91%

Theology 3,511 14.75% 2,098 8.82% 1,413 5.93%

Linguistics 597 12.99% 374 8.14% 223 4.85%

Table 7. Duplicate syllabi by field of study. A duplicate refers to a set of DWA vector with the same scores. 
The first column shows the total number and percentage of the duplicates obtained from each institution-FOS 
combinations. The second column shows the number and percentage of the duplicates within a year calculated 
based on institution-FOS-year combinations. And the last column is the total duplicates minus the the within 
year duplicates. The duplicate column shows the average of duplicate syllabi (i.e., having the same DWA skill 
vector) within the same field of study and university across different years.

Fig. 7 Trends in the coverage of institutions across different fields of study. The heatmap visualizes the coverage 
trends for various fields of study (2-digit CIP titles) across six time periods (2000-2003, 2004-2007, 2008-2011, 
2012-2015, and 2016-2017). The coverage is the percentage of the number of institutions with at least one 
syllabus from a institution-FOS-year combination divided by the total number of institutions with a positive 
number of bachelor’s degrees from the same institution-FOS-year combination obtained from IPEDS.
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Skill normalization. Some skills, such as “Maintain student records” and “Document lesson plans”, are 
ubiquitous across fields of study (FOS) and, therefore, do not distinguish the learning content of one FOS from 
another. To address this issue and control for widespread skills we propose two approaches when using our data. 
Although we use them in some of the validation analysis, the published dataset remains intact.

a b

Fig. 8 Identification of the sufficient number of syllabi. The average (a) Manhattan Distance and (b) Euclidean 
Distance between the aggregated and a given number of randomly selected syllabi. Each point represents the 
mean distance for a given number of syllabi, with their corresponding error bar. The elbow points, marked with 
an olive ‘X’ and annotated, indicate the sufficient number of syllabi (here, 9 syllabi) where the rate of decrease 
in distance significantly slows down. These points help identify the threshold beyond which additional syllabi 
contribute minimally to reducing the distance, providing a practical cutoff for data aggregation. Note that the 
x-axis is limited to 50 for the visualization purpose.

Fig. 9 Identification of the sufficient number of syllabi for sample of FOS. The average Euclidean Distance 
between the the aggregated and a given number of randomly selected syllabi within each FOS. Each point 
represents the mean distance for a given number of syllabi, with their corresponding error bar. The elbow 
points, marked with an olive ‘X’ and annotated, indicate the sufficient number of syllabi (e.g., 8 syllabi for 
Accounting and 10 syllabi for Architecture) where the rate of decrease in distance significantly slows down. 
These points help identify the threshold beyond which additional syllabi contribute minimally to reducing 
the distance, providing a practical cutoff for data aggregation. Note that the x-axis is limited to 50 for the 
visualization purpose.
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The first approach is applying Revealed Comparative Advantage (RCA) (a.k.a., “location quotient”32,47–50). 
RCA is a concept used to identify areas where an entity has a relatively high presence compared to others. In our 
context, RCA helps to reveal which skill s most strongly distinguishes one FOS m from others. RCA is calculated 
as follows: 
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Fig. 10 The relationship between the minimum number of syllabi per cohort and the average total number of 
graduates nationwide between 2000 and 2017. The x-axis shows the minimum number of syllabi per cohort 
(institution, FOS, period) and the y-axes show the average total number (left) and percentage (right) of 
graduates nationwide. The plot shows how the total number of graduates decreases as the minimum number of 
syllabi per cohort increases. The shaded area corresponds to the 95% confidence interval.

Detailed Work Activities (DWA) Score

Revealed Comparative Advantage (RCA) Score

Fig. 11 The DWAs most strongly associated with Agriculture, Biology, and Computer Science. (top) Top 10 
inferred workplace activities with the highest DWA scores. (bottom) Top DWAs according to their RCA scores.
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 where m ∈ M denotes a FOS (i.e., a college major) and s ∈ S denotes a skill (i.e., an O*NET DWA). If 
rca(m, s) > 1, then s is more related to m than would be expected across all DWAs and all FOS; therefore, s is a 
relatively distinctive skill identifying m more strongly than other FOS.

The second approach, which we used to produce Fig. 11, is to mask frequent skills in empirical analyses that 
use the skill scores. What is considered “frequent” should depend on the specific application, so we do not mask 
any skills in the published dataset. However, as a useful resource, we create a table “top10_DWA_per_FOS” on 
Figshare26 which lists the top 10 inferred workplace activities with the highest average DWA scores per FOS.

Data Records
The Course-Skill Atlas dataset is freely available at Figshare26.

Schema and Variables. Our research contract with OSP requires that we do not release information at the 
individual syllabus level. As such, we create a dataset of inferred skills aggregated at the institution-year-FOS 
level. The Course-Skill Atlas dataset includes three key components: DWAs, Tasks, and Abilities. Each represents 
the corresponding vectors produced by Syllabus2O*NET and aggregated at our chosen granularity. Figure 2 
provides the entity relationship diagram of these components.

Each record in these datasets includes the year, institution name, and UnitID (i.e., the unique identifier 
assigned by Integrated Postsecondary Education Data System (IPEDS) (https://nces.ed.gov/collegenavigator/) 
to each institution), the geographical location of the institution (i.e., the city and state), the FOS name along with 
its CIP code(s), as well as the institution’s sector — one of nine institutional categories created by combining an 
institution’s control and level (e.g., “public 4-year or above”), which we obtained from the Carnegie Classification 
of Institutions of Higher Education (CCIHE) (https://carnegieclassifications.acenet.edu/).

The field_code string contains one or more IPEDS CIP codes (https://nces.ed.gov/ipeds/), representing the 
field(s) of study most associated with the syllabus. OSP’s field classifier relies on the IPEDS 2010 CIP taxonomy 
(https://nces.ed.gov/ipeds/cipcode/default.aspx?y=55) to determine the most relevant field of study (FOS) for 
each syllabus. CIP codes are structured in lengths of two, four, and six digits, where two-digit codes represent a 
broad discipline, four-digit codes represent subdivisions of that discipline, and six-digit codes provide further 
subdivisions. For instance, the two-digit CIP code ’01’ corresponds to “Agriculture, Agriculture Operations, 
and Related Sciences”; within this category, the four-digit code “01.01” denotes “Agricultural Business and 
Management,’ and “01.0103” specifies “Agricultural Economics.” OSP’s FOS classifier is trained and tested on a 
curated subset of the CIP taxonomy that OSP has found most effective for describing syllabi. Occasionally, OSP 

Fig. 12 The similarity of FOS according to their DWA profiles. The heatmap shows the Spearman’s rank 
correlation between the fields of study and the dendrogram represents the results of hierarchically clustering 
similar FOS. The dendrogram on the left side organizes the FOS into clusters based on their similarity. Each 
branch point (node) indicates a point where two branches merge, showing the hierarchical relationship between 
the fields of study. Fields of study that cluster together (i.e., merge at lower levels) are more similar to each other 
in terms of their task profiles. For instance, closely related fields like “Physics” and “Chemistry” are grouped 
together.
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combines codes, but only within the same two-digit branch of the taxonomy. In these instances, codes are sepa-
rated by a forward slash (‘/’). For example, the code “45.09/45.10” merges “International Relations and National 
Security Studies” and “Political Science and Government,” both of which fall under the two-digit code ‘45’ for 
“Social Sciences.” This combined FOS is labeled as “Political Science.” Note that the the assigned CIP code(s) are 
consistent across all the syllabi; meaning that all “Political Science” syllabi are mapped to the same list of CIP 
codes, i.e., “45.09/45.10” (see Table field_name_and_code on Figshare26 for the list of fields name and their CIP 
code(s) mappings). If OSP is unable to confidently assign an academic field to the syllabus, the value of this col-
umn is null. Moreover, we enriched each record by the sector of the institutions (i.e., control and level combined 
(https://carnegieclassifications.acenet.edu/wp-content/uploads/2023/03/CCIHE2021-PublicData.xlsx). Further 
university characteristics can be added to the dataset by merging the syllabi Table and the target dataset on the 
UnitID variable.

The aggregated scores are the average scores across all the syllabi belonging to the corresponding year, uni-
versity, and FOS. For example, let’s consider a given year, university, and FOS which has two syllabi. The score of 
DWA1 in Syllabusa is 0.8 and the score of the same DWA in Syllabusb is 0.6. Taking the average of the two scores, 
the aggregated score of DWA1 for the given triplet is 0.7.

For the remainder of this paper, we only use DWA scores for various descriptive and validation analyses, 
which can be easily applied to task and ability scores as well.

Descriptive Statistics. Figure 3 depicts the geographical, temporal, and institutional distribution of the syl-
labi data. Across each U.S. state, between 32% and 76% of the postsecondary institutions in each state provide at 
least eight course syllabi (i.e., corresponding to the 25th percentile. See Fig. 3a). The majority of the syllabi belong 
to the period post-2000, with sparse coverage between 1966 and 1999. (See Fig. 3b) Across the entire dataset, 
the majority of universities (nearly 2000) contribute at least 10 syllabi to the data, but some contribute up to 105 
syllabi across all FOS (see Fig. 3c). 

Figure 4 shows the syllabi count distribution of the aggregated records. Table 3 lists the frequency of syllabi 
per FOS. Table 4 details the geographical coverage of the OSP dataset. Number of educational institutions within 
each state is obtained from CCIHE. For example, Texas with 865, 973 syllabi has the largest number of syllabi 
(27.85%) in the dataset. According to CCIHE, there are 226 universities and educational institutions located 
in Texas, among which 54.42% have at least 8 syllabi (25th percentile) in the OSP dataset. Moreover, more than 
80% of the syllabi belong to the public universities with a majority belonging to the 4-year universities. Nearly 

Fig. 13 The similarity of FOS according to their Task profiles. The heatmap shows the Spearman’s rank 
correlation between the fields of study and the dendrogram represents the results of hierarchically clustering 
similar FOS. The dendrogram on the left side organizes the FOS into clusters based on their similarity. Each 
branch point (node) indicates a point where two branches merge, showing the hierarchical relationship between 
the fields of study. Fields of study that cluster together (i.e., merge at lower levels) are more similar to each other 
in terms of their task profiles. For instance, closely related fields like “Physics” and “Chemistry” are grouped 
together.
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15% are from private not-for-profit, 4-year or above universities (see Table 5 for the frequency and percentage of 
syllabi per university sector). In addition, Table 6 lists the syllabus count per top 100 universities across all years 
and all FOS. Finally, Fig. 5 details the number of syllabi per FOS between 2000 and 2017 (see Figure 6 for FOS 
according to 2-digit Classification of Instructional Programs (CIP) 2010 taxonomy).

technical Validation
Duplicate analysis. How many duplicate syllabi exist in our dataset? The syllabi data may have “duplicates” 
because an instructor might teach a course across multiple years with minimal syllabus change, or some intro-
ductory courses may have some standard design adopted across institutions. To assess the prevalence of duplicate 
syllabi in our dataset, we conducted an analysis on the original, disaggregated data. Specifically, we compared the 
DWA skill vectors from syllabi within the same field of study and university across and within various academic 
years. In this context, “duplicate” syllabi are defined as those with either identical textual content or learning mate-
rials that yield the same similarity score on our NLP framework’s assessment. 25.20% of the total syllabi within a 
university-major-year are duplicates. This number grows to 31.60% when measuring the total duplicates within a 
university-major pair. By taking the differences between these two, we observe that 6.40% of duplicates are across 
years. This relatively low value suggests that instructors are updating their syllabi over time, which leads to differ-
ences in skills critical for our analyses. These results indicate that majority of the duplicates come from multiple 
courses in the same major, university and academic year teaching the same content. Table 7 reports these values 
by field of study. Additionally, Table duplicate_counts on Figshare26, details the total counts of both original and 
duplicate syllabi for each university and field of study pairing.

Representativeness analysis. How representative is our data of US higher education? A recent study 
using the OSP dataset51 shows that the syllabi sample consistently represents about 5% of all courses taught in US 
institutions from 1998 to 2018. In their analysis of courses from 161 representative US institutions, they find that 
the sample slightly overrepresents Ivy-Plus schools but is broadly representative in terms of field and course level 
distribution. Despite this bias, the dataset adequately reflects U.S. higher education offerings during the period, 
with no significant bias in financial resources or student demographics.

Moreover, we calculate the coverage of institutions across different FOS according to the number of 
Bachelor’s degrees awarded in a FOS across US institutions between 2000 and 2017 obtained from IPEDS com-
pletions data (https://nces.ed.gov/ipeds/datacenter/DataFiles.aspx?year=-1&surveyNumber=3&sid=6758f
146-5ae5-44a0-8982-9821e70a8757&rtid=7). We calculate the coverage as the percentage of the number of 
institutions with at least one syllabus from a institution-FOS-year combination divided by the total number 
of institutions with a positive number of bachelor’s degrees from the same institution-FOS-year combination 
obtained from IPEDS. Fields such as “Engineering” and “Social Sciences” show a consistent coverage over 40%. 
On the other hand, several fields like “Military Technologies” and “Natural Resources and Conservation” have 
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Fig. 14 Dynamic differences between skill (DWA) distributions in course syllabi and the labor force. The 
matrix reports pairwise Kullback-Leibler (KL) divergence between course syllabi and the labor force for (a) 
syllabi from all FOS and employment-weighted O*NET DWA profiles for occupations requiring a university 
degree, and (b) Computer Science and Mathematics course syllabi and employment-weighted O*NET DWA 
profiles for Computer and Mathematical Occupations (SOC 15-0000). The off-diagonal elements in the Course 
Syllabi and Labor Force cells are looking at the correlation between the DWAs in those time periods and the 
syllabi in those time periods. These are not required to be symmetric, meaning that DKL(P∥Q) is not necessarily 
equal to DKL(Q∥P).
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consistently zero coverage (see Fig. 7). Table ipeds_2digit_grad_2000_2017 on Figshare26 provides the number 
of graduates per university and 2-digit CIP code between 2000 and 2017 downloaded from IPEDS.

Sufficient Number of Syllabi. How stable are our estimates of the skill content associated with each 
FOS and institution in each year? We analyze DWA institution-FOS-year combinations with at least two syllabi 
post-2000 (i.e., 2, 686, 066 syllabi). For each institution-FOS-year combination, we calculate the Manhattan and 
Euclidean distances between the aggregated published skill profile (i.e., the average scores of the complete set of 
syllabi) and the skill profile of a randomly selected subsample of syllabi (from one syllabus up to the maximum 
number of syllabi for the given institution-FOS-year combination minus one). We perform ten trials for each sub-
set size. Finally, we average the distances of each subset size for all syllabi and calculate their distances. Figure 8 
illustrates this analysis using Manhattan (Fig. 8a) and Euclidean (Fig. 8b) distances between the aggregated and 
sampled profiles. Each point in the plots represents the mean distance for a given number of syllabi and the error 
bars represent a 95% confidence interval. The elbow points52,53, annotated with “X”, indicate where the rate of 
decrease in distance significantly slows down thus identifying the sufficient number of syllabi is equal to 9. Out 
of 281, 153 published institution-FOS-year combinations, 49, 750 have at least 9 syllabi (17.69%). Note that the 
minimum number of syllabi (i.e., 9) is obtained using nearly all the available syllabi and the y-axes of the figures 
are limited to 50 for the visualization purpose. Moreover, to see how the sufficient number might vary within 
each FOS, we redo the mentioned procedure for all the institution-FOS-year combinations within a given FOS. 
The minimum number of syllabi for a majority of the fields of study is between 8 and 10 with some exceptions 
for Transportation and Veterinary Medicine (see Fig. 9 for examples and Figure euclidean_n_syllabi_elbow_per_
major on Figshare26 for the complete list.). We publish all the calculated distances in Table manhattan_euclid-
ean_distances on Figshare26.

Lastly, how does the minimum number of syllabi per cohort relate to the total number of graduates with 
available syllabi in our dataset? We explore by counting the number of graduates per institution-FOS combi-
nation between 2003 and 2017 while varying the minimum number of syllabi from different cohorts between 
2000 and 2017 (see Fig. 10). The first cohort (2003) contains the syllabi between 2000 to 2003. For exam-
ple, considering all the institution-FOS-year combinations with at least one syllabus allows us to analyze the 
course materials of nearly 1.1 million nationwide Bachelor’s degree graduates per year. However, restricting to 
institution-FOS-year combinations with at least 9 syllabi narrows the analysis to around 622, 000 graduates, i.e., 
around 35.46% of graduates per year.

Qualitative analysis of the inferred Workplace activities. As a face-validity check of 
Syllabus2O*NET, we list the ten DWAs that are most strongly associated with three example fields of study 
(FOS): Agriculture, Biology, and Computer Science (see Fig. 11). Some DWAs (e.g., “Prepare informational or 
reference materials”) are common across many FOS and, therefore, obscure the DWAs that most distinguish one 
FOS from the others. To normalize for ubiquitous DWAs, we also present the DWAs with the greatest revealed 
comparative advantage (RCA) in each field (see Section “Skill Normalization”). For instance, “Plant crops, trees, 
or other plants” emerges as the foremost skill in Agriculture, “Research diseases or parasites” is predominant 
in Biology, and “Coordinate software or hardware installation” is leading in Computer Science according to 
RCA scores. Top 10 DWA per FOS contains similar results for each FOS (see Table top10_DWA_per_FOS on 
Figshare26).

Relating Fields of Study Based on Skill Similarity. How similar are fields of study based on their skills? 
Following existing work22, we employ agglomerative hierarchical clustering technique54 on the DWA vector rep-
resentations of academic majors, aiming to elucidate their hierarchical relationships. Hierarchical clustering gen-
erates a nested sequence of clusters, allowing for an in-depth exploration of clusters at varying levels of granularity 
without predefining a specific number of categories (in this context, groups of majors). In this framework, FOS 
are deemed similar if they share the same work activities (see Fig. 12 for DWAs and Fig. 13 for Tasks).

The resulting dendrogram offers another face-validity check as similar FOS (e.g., STEM majors) tend to 
require similar DWAs. For instance, Marketing and Economics are closely related, as are Linguistics and History. 
Notably, just before the final clustering step, which amalgamates all majors (indicated in blue), two predominant 
clusters are discernible: one representing technical majors including those in STEM (in green) and the other 
humanities-based majors (in orange). For example, although Film and Photography is not a STEM-designated 
program, it requires skills that are common in STEM fields, such as “Draw detailed or technical illustrations” and 
“Design video game features or details” (see Table top10_DWA_per_FOS on Figshare26).

Dynamic Differences Between inferred Workplace activities and Labor Market Workplace 
activities. How responsive are the skills taught in higher education to the skills required in the U.S. labor 
market? A “skill mismatch” may occur if higher education fails to adapt to the demands of the labor market55–57 
(e.g., by teaching more theoretical skills than practical skills55). Our dataset naturally offers an avenue of exam-
ining this mismatch as the scores are computed via comparison between taught content in higher education and 
skills in the labor market defined by the federal government. To validate this utility, we perform a similar analysis 
to that done by Börner and colleagues20. In their study, skill mentions were identified in course syllabi and in job 
postings to compare skills taught and demanded in computer science related fields in the US, where skills came 
from a skill taxonomy established by the Burning Glass Technologies. Then, Kullback-Leibler (KL) divergence 
was used to quantify the difference between skill distributions in course syllabi and those in job postings, and 
between different time periods.
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With the Course-Skill Atlas dataset, we have measures of skills taught in course syllabi. On the labor market 
side, each occupation in the economy can be characterized by the same measure of skill, in this case, DWAs. To 
generate a measure of the economy-wide skill demand, we weight by the national employment share associated 
with each occupation from the US Bureau of Labor Statistics (BLS) Occupation Employment and Wage Statistics 
(OEWS) (https://www.bls.gov/emp/ind-occ-matrix/occupation.xlsx). Across all FOS, the decreasing values of 
KL divergence over time in Fig. 14a indicate that the skills taught in course syllabi are becoming more similar 
to the skills required in the labor market. Specifically, comparisons between earlier syllabi (e.g., 00-03) and later 
labor force periods (e.g., 12-16) show a trend of decreasing divergence, reflecting an increasing alignment of 
skills. This pattern indicates that educational entities are progressively aligning their course content more closely 
with the requirements of professional environments. This alignment might result from a heightened recognition 
of occupational needs, enhancements in educational methodologies, or influences from regulatory agencies and 
corporate collaborations. Additionally, the reduction in KL divergence over successive periods underscores that 
recent syllabi not only integrate more pertinent skills but also likely eliminate outdated elements less relevant 
to contemporary professional demands. These gradual modifications suggest an encouraging evolution toward 
educational outputs that are directly advantageous for students transitioning into professional roles. These 
results suggest that taught skills are forward-looking. However, going beyond existing research, our dataset ena-
bles us to make direct comparisons between specific FOS and labor market dynamics for individual occupations. 
For example, motivated by earlier analysis of CS syllabi and CS-related job postings20, we compare CS syllabi to 
Computer and Mathematical occupations (i.e., Standard Occupation Classification code: 15-0000. See Fig. 14b). 
Despite the trend across all FOS, over time, the labor force skill distribution becomes increasingly dissimilar to 
older course syllabi which confirms the rapidly changing nature of such domains. Comparing the KL Divergence 
scores of the syllabi among different periods (top left box of Fig. 14b), we observe that syllabi are staying stag-
nant, and as a result, they are moving away from the frontier of knowledge required in the labor force.

Usage Notes
Course-Skill Atlas offers a versatile tool for addressing a variety of research questions pertinent to education 
and workforce development across multiple domains. In the following, we briefly touch on potential research 
questions utilizing this dataset, including exploring differences in skill sets across gender profiles in U.S. higher 
education, the trend of abilities in teaching activities, and utilizing skill scores for salary estimation. Lastly, we 
discuss our data’s limitations. 

•	 How does the specificity of skills taught in different college majors affect labor market outcomes, such as 
wages, career adaptability, and the likelihood of obtaining managerial positions? Research has consistently 
shown a strong relationship between college majors, skills, and wages58– 60. For example, some majors may 
offer more diverse skill sets with more general skills profiles that lead to adaptable careers after a student 
graduates and enters the workforce6. The salary gap among majors is multifaceted, involving factors like 
labor market demands61 and major distribution’s effect on gender wage disparities59. There is a growing lit-
erature in labor and education economics on how general versus specific majors affect occupational choice 
and wages62,63. Majors with higher specificity, such as education and nursing, generally lead to higher earn-
ings compared to more general majors like music and psychology, driven by higher hourly wages. However, 
graduates from specific majors are less likely to hold managerial positions, with those from majors of average 
specificity being most likely to become managers62. Our dataset provides the opportunity to investigate such 
differences.

•	 How have teaching strategies and curriculum design evolved over time across different majors and univer-
sities? Our dataset enables the study of skill differences within and across majors and universities over time. 
Taking active learning in social sciences as an example, a recent critique of active learning and the employ-
ability agenda in higher education within the social sciences64 identified an inadvertent neglect of key skills 
including reading, listening, and note-taking due to the lack of proper active learning strategies. The findings 
from such a direction of research could pave the way for further investigation into how educational strategies 
can be developed to effectively balance traditional academic skills with the competencies essential for active 
learning environments.

•	 What role do educational institutions play in shaping the differences in skills between genders, particularly 
in relation to course syllabi? Existing research finds that males and females tend to possess different work-
place skills on aggregate65,66, which may correspond to gender stereotypes shaping careers67. But are these 
differences the result of education or labor market outcomes? In general, these questions can only be studied 
through enrollment and graduation statistics from the US Department of Education without taking into 
account the granular differences in taught skills across different majors and institutions. However, our dataset 
enables the study of this heterogeneity and, thus, creates an opportunity to explain career outcomes from 
the differences in skills taught during higher education—even differences within a given FOS based on var-
ied enrollment across educational institutions. Our dataset has the potential to explain the skill differences 
between majors and institutions based on course syllabi.

Limitations. This study produces a novel large-scale dataset reflecting the skills taught to US college and uni-
versity students across majors. While useful for understanding one of the major pathways for workforce develop-
ment in the US, there are some limitations to the current dataset. First, the syllabus dataset is, to our knowledge, 
the largest collection of university syllabi available, but as reported in51 it is slightly skewed by school selectivity, 
overrepresenting Ivy-Plus, Elite, and selective public schools by 2.4 to 4.0 percentage points, while including less 
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than 0.1 percent from non-selective institutions. Although the sample isn’t biased by observable characteristics 
and consistently represents about 5% of all courses taught in US institutions post 1998, the potential for unob-
servable selection remains a caveat in interpreting the results. Second, we propose a new approach for inferring 
taught skills (i.e., O*NET DWAs and Tasks) from syllabus text, but it is difficult to confirm the effectiveness of 
our approach without wide-scale comprehensive exams to test the skills that students actually obtain during a 
course. Such an effort would be extremely cumbersome because each student would ideally be assessed on over 
2,000 DWAs; it’s not clear how to empirically validate each of these DWAs and implementing such an examina-
tion across universities and majors throughout the US would be an immense undertaking. Effectively, it is crucial 
to acknowledge that teaching does not necessarily equate to learning. Third, another limitation of this work 
relates to handling potential prerequisites. Prerequisites might appear in a syllabus in two forms. If they appear as 
administrative details (e.g., the course code), since our data preparation pipeline removes such details, they will 
not affect the inferred skill vector. On the other hand, when a syllabus includes the content of prerequisites — 
similar to learning objectives, they are processed in the same manner as the skills for the course itself. However, 
due to the unstructured nature of each course description (i.e., presented in a single string format), we are unable 
to identify and exclude these prerequisites from the final skill scores. This limitation affects the accuracy of the 
skill assessment by conflating course skills with prerequisites. Fourth, due to the lack of enough metadata in the 
raw dataset, we are unable to distinguish between undergrad and graduate courses. Fifth, our approach relies 
on the O*NET database which is designed to describe workers in the US workforce, and not explicitly designed 
to describe learning outcomes. While O*NET serves as a standardized taxonomy for communicating results to 
policymakers, its coverage across all occupations, and by extension, academic majors, is not uniformly compre-
hensive. Sixth, existing research68 show that the distribution of the course credits varies for college students even 
with the same field of study69. Consequently, using field of study as a stand-in for an individual’s complete set of 
skills is inadequate. Due to the lack of data on enrollment per major and coursework taken by the students, we 
based our coverage analysis solely on the number of graduates per major.

Code availability
The source code for Syllabus2O*NET and DWA2Ability is available at https://github.com/AlirezaJavadian/
Syllabus-to-ONET.
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