
RESEARCH ARTICLE

Salient syllabi: Examining design

characteristics of science online courses in

higher education

Christian FischerID
1*, Peter McPartlan2, Gabe Avakian Orona1, Renzhe Yu3, Di Xu2,

Mark Warschauer2

1 Hector Research Institute of Education Sciences and Psychology, University of Tübingen, Tübingen,
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Abstract

The importance of online learning in higher education settings is growing, not only in wake

of the Covid-19 pandemic. Therefore, metrics to evaluate and increase the quality of online

instruction are crucial for improving student learning. Whereas instructional quality is tradi-

tionally evaluated with course observations or student evaluations, course syllabi offer a

novel approach to predict course quality even prior to the first day of classes. This study

develops an online course design characteristics rubric for science course syllabi. Utilizing

content analysis, inductive coding, and deductive coding, we established four broad high-

quality course design categories: course organization, course objectives and alignment,

interpersonal interactions, and technology. Additionally, this study exploratively applied the

rubric on 11 online course syllabi (N = 635 students) and found that these design categories

explained variation in student performance.

Introduction

The importance of online coursework in higher education reached new heights due to the

Coronavirus disease 2019 (Covid-19) induced shift to emergency remote education. However,

even before the Covid-19 pandemic, many students enrolled in online courses. For instance,

about 34% of all undergraduate students (about 5.7 million students) enrolled in at least one

online course [1]. Although studies reported that online learning in higher education can have

positive effects similar to face-to-face coursework [2–4], more recent studies underscored that

the effectiveness of online education is a field full of heterogeneous effects with ample research

studies indicating that students may struggle in online learning environments [5–9]. This may

lead to lower course persistence rates in online settings, compared to their face-to-face coun-

terparts [9, 10]. Especially, students with weaker self-regulation are challenged in online learn-

ing environments [11–14].

To unpack potential areas for improvement of online learning, recent studies examined the

structure and design of online courses to identify quality indicators of online course
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experiences [10, 15]. Much work that examines the effectiveness of college courses relies on

course observations or student evaluations [15–18]. However, course observations and student

evaluations have several limitations. For instance, student course evaluations tend to disfavor

female instructors [19]. In-depth course observations may provide rich information regarding

course design features but require intensive time commitment from observers making data

collections at scale difficult. Course syllabi may address these scalability problems as they rep-

resent a more cost-effective, less biased, and less invasive approach to examine course quality.

Thus, this study utilizes course syllabi as its primary data source and adapts existing classifica-

tion rubric primarily used in observational studies for course syllabi.

This study has implications for multiple stakeholders. From a theoretical perspective, it rep-

resents the first step in identifying links between syllabus-derived course design features and

student performance. From a practitioner perspective, identifications of important course

design features may guide instructional practice. From an administrative perspective, this

study responds to the need for colleges to benchmark their online course quality as depart-

ments may want to continue including online course offering in their teaching portfolios after

the Covid-19 pandemic. Inferences may support the development of cost-effective (and feasi-

ble) ways to assess many online courses and to identify courses that are not fully leveraging the

affordances of online learning in a timely manner, for instance, as part of a course-level early

warning system

Online courses in college environments

The role of online education in the higher education landscape is ever increasing in the

decades to come. With the shift to emergency distance learning due to the Covid-19 pandemic

forcing many departments to move to fully online education, departments may choose to

incorporate some courses in the regular teaching portfolio after the pandemic. Although

online courses should certainly not be viewed as a one-size-fits-all solution to the future of

learning, they provide some affordances that could potentially benefit learners. For example,

online courses present opportunities for differentiated instruction and the ability to go at one’s

own pace [20, 21]. Also, online courses allow universities greater capacity to accommodate

non-traditional students who may need additional preparatory course work or flexibility of an

asynchronous schedule to balance academic coursework with work and family responsibilities

[22–24]. Furthermore, online education may be more cost-effective not only to universities

but to students as increased access to learning opportunities may accelerate their time-to-

degree [25].

Potential adversary characteristics include a reduction of social presence through fewer

face-to-face interactions, which can reduce students’ motivation to carry out their study plans

and the greater need for self-regulation abilities [26, 27]. Although, self-regulation is important

for learning in any context, it is especially important in online learning as learner-centered

approaches require greater self-directed learning skills to succeed [11–13, 28]. This has impli-

cations for both educational quality and equity. For example, institutions that enroll many stu-

dents with insufficient self-regulation abilities would face greater challenges in achieving

learning outcomes in online coursework. Indeed, existing studies indicate that this heterogene-

ity has largely been approached by investigating the context in which online courses are taught.

Online courses composed of students from traditionally disadvantaged backgrounds are more

likely to see worse achievement outcomes online compared to face-to-face courses [5, 29–31].

Because of this, institution type may also play a role, with negative effects coming from com-

munity college populations [8, 32], which tend enroll more students from disadvantaged back-

grounds. However, less research focused on how online courses are taught and their
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subsequent impact of specific course elements on student success [15]. Thus, this study

explores course design features that are common in online education to examine the potential

quality of online course offerings.

Design characteristics of online courses

Among studies that have investigated the quality of online courses, a handful of consistent

themes emerge. Jaggars and Xu provided a comprehensive framework for understanding indi-

cators of quality online course delivery [15]. Their review spanned research from practitioner-

oriented literature, surveys of student and instructor opinion regarding elements of high-qual-

ity online courses, experimental studies manipulating specific design features, and rubrics of

quality assessment developed by educational associations. The resultant framework suggested

four main areas of quality, including course organization and presentation, learning objectives

and alignment assessment, interpersonal interactions, and technology. This study builds on

this framework but adapts it for course syllabi as its primary data source.

Course organization. A popular metric of online course quality, course organization,

involves the clarity and consistency of the course structure. Research from opinion surveys

and practitioner literature emphasize the importance of the course’s presentation to course

quality, finding associations with students’ appreciation of the instructor [33–35]. Students

consider “ease of use” and course organization an important criteria for determining course

quality [36]. Course organization can be evident in course outlines, hyperlink structures,

instructions for assignments, and grading policies [37, 38]. Creating a navigable infrastructure

(e.g., organization of weekly assignments, instructions for getting started) supports student

autonomy within the course, which is essential for asynchronous learning [39, 40]. Supporting

students’ autonomy not only applies to their ability to find resources online, but also their abil-

ity to self-regulate their learning appropriately based on the organization of course expecta-

tions. Course organization may improve students’ experiences when it clearly conveys

assignment due dates, preparation time, and policies towards late submissions [14, 15, 41].

Learning objectives and alignment. Especially in online learning environments, where

students are expected to study more independently, carefully choosing and presenting a

course’s learning objectives is important [34, 42]. Several quality rubrics highlight that learning

objectives should be measurable and consistent [34, 43]. Accordingly, assessments should be

aligned with those learning objectives, for instance, utilizing detailed assignment descriptions.

Instructors are encouraged to align course elements with overall learning objectives by pre-

cisely stating learning objectives for which course activities then serve to measure, especially

when it comes to exams [36, 39]. Within each course activity, instructors can support students’

achievement of each learning objective by suggesting strategies for successful study behavior

[44]. This may include clear instructions on the sequence in which course elements should be

started and completed to optimize understanding [36, 40] and to encourage students to self-

test their knowledge and space their study time into multiple sessions throughout a week [45–

47].

Interpersonal interactions. In online courses, interpersonal interactions stand out as for

promoting cognitive engagement with the course and students’ psychological connection to

the course [15]. Time and space between instructors and students inherent to online courses

creates greater transactional distance, which may threaten students’ psychological connection

to the course [48]. Instructors can counteract this by cultivating a stronger social presence, stu-

dents’ perceptions that the instructor is a “real person.” In practice, this may be approached

through an instructor’s use of humor and self-disclosure, both of which help convey the

uniqueness of an instructor’s personality in the absence of non-verbal communication [49].
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Similarly, communication that uses a tone that is friendly, open, and caring can help students

feel a sense of identity with the course, as can preparing students for the hazards of discussing

sensitive topics in the classroom [39, 50]. Instructors can even increase the effectiveness of stu-

dent-peer interactions by providing guidelines for “netiquette,” or preparing students to use a

“connected voice” when working with each other [39]. Furthermore, the effectiveness of inter-

actions depends also their frequency and accessibility [51]. Students’ perceptions of instructor

accessibility can be supported by quickly replying to email communications and facilitating

social integration [39, 40]. Connecting with students through multiple digital channels, includ-

ing social networking sites, can also increase instructor accessibility [49]. Students can also

benefit if the instructor facilitates student-peer communication that has a clear purpose [52].

Similarly, students may benefit from voluntary peer communication, for instance, on course-

specific discussion boards [53].

Technology. The approaches of how instructors utilize technology is associated with stu-

dent satisfaction and performance [33, 36]. It is important to note that using technology for

the sake of technology is not necessitating improvements for student learning as it may also

induce extraneous cognitive loads [54]. Therefore, theoretical reviews have encouraged

instructors to make the challenges of online learning explicit to students, along with informa-

tion about the course and technical support [39, 55]. For instance, using technology to opti-

mize the potential for learners’ autonomy is critical beyond just its mere presence [56].

“Linkability” to important resources outside the course website, for instance, increases instruc-

tors’ ability to moderate online courses effectively [57]. Similarly, easily accessible and down-

loadable technology are important quality course indicators, as well as tools that help students

connect with the course material beyond simply reading text [33]. Furthermore, the effective-

ness of technology should coincide with lowering barriers to participation so that students

have sufficient access to required technology [34].

Research questions

This study connects to the research base on online courses in higher education, ultimately

attempting to support improvements of instructional practices in online settings. This study

adapts and examines commonly used course design rubrics for course syllabi. In addition, we

provide an exploratory empirical investigation on potential correlational associations of online

course design features with student grades, which may inspire future research pursuits includ-

ing testing causal processes and systematically analyzing larger databases of course syllabi.

This study is guided by the following research questions (RQs):

RQ1: What are trends in course design characteristics across online courses?

RQ2: What are associations between online course design characteristics and student grades?

Material and methods

Study setting

This project is situated at a large public research university in California. This institution

enrolls a more diverse student body compared to peer institutions in the United States holding

federal designation as both an Asian American and Native American Pacific Islander-Serving

Institution and a Hispanic-Serving Institution.

Data for this study was provided from multiple units on campus including Admissions, the

Office of Institutional Research, and the Registrar’s Office. Course syllabi were collected
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through targeted emails to science course instructors (i.e., Biology, Chemistry, Physics) who

taught at least one four-unit online lecture course for undergraduates between 2014 and 2017.

Instructors were asked to share their course syllabi or information about their course in the

learning management system, which we treated as de facto syllabi. Notably, there were no

departmental or university standards for the content of syllabi, which were solely designed by

the instructors of each course. If an instructor taught the same online course multiple times,

we only requested the syllabus for the latest course iteration. In total, 47 courses fit our inclu-

sion criteria with a total of 18 unique course-instructor pairings. We collected course syllabi

from 11 course-instructor pairings (61.1% response rate). That said, this institution’s overall

proportion of online science courses is relatively small (3.3% online courses in 2014–2017).

Notably, this study takes part before the shift to emergency distance education, in which the

university did not centrally organize online courses offerings. Instead, instructors could often

choose whether to offer their courses in online or face-to-face modality.

These course syllabi represent four biological science and four physics courses. None of the

eligible chemistry instructors provided us with course syllabi. Topics of the biological sciences

courses included cell biology and genetics (biological sciences course 1); ecosystems and evolu-

tionary processes (biological sciences course 2); proteins, properties and pathways (biological

sciences course 3); and molecular, cellular, and other structural features of the human body

(biological sciences course 4). Topics of the physics courses included basic concepts of force,

motion, and vectors (physics course 1); oscillations, waves, fluids, and optics (physics course

2); fundamental physics and mathematical principles to understand science fiction from scien-

tific facts and discoveries (physics course 3); and the history and methodology to study solar

systems (physics course 4).

Notably, the small course-level sample size did not impede our ability to develop the course

design rubric for college science courses as occurrence of additional categories and items

within categories was saturated even with a subset of these syllabi. A subsequent quantitative

analysis applying the coding rubric on these 11 courses (which enrolled a total of 635 students)

allows for some initial explorations on potential correlations with syllabi-derived course design

characteristics. However, the limited statistical power for subsequent multi-level quantitative

analysis (i.e., nesting students within courses) requires caution when interpreting associations

of course design characteristics with student grades.

Development of coding rubric

Our analysis modeled the steps of content analysis in identifying sources of data, developing

categories and codes, and clustering codes in themes [58]. Content analysis considers which

data are to be analyzed, how they are defined, relevant population(s), context, boundaries, and

intended inferences [58, 59]. The coding rubric was developed through a six-stage process:

The first stage consisted of an extensive review of the online teaching and learning literature.

This included an extensive search for studies investigating course design features and compo-

nents. Key search words included online course design features, online course components,

syllabi, coding frameworks, and online teaching and learning. Articles that exhibited topics

concerning online course features, observation protocols, and coding schemes were selected

for detailed review. This review was used to identity important online course design features.

In the second stage, we classified online course design characteristics derived from the litera-

ture search into general course design categories and subcategories in a series of meetings with

the research team. For instance, categories such as interpersonal communication and peer-to-

peer interaction emerged from the deliberation of the online course design literature and were

vetted against seminal works in the field.
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The third stage utilized four existing course syllabi to verify the completeness and accuracy

of the coding rubric and added, removed, merged, and split course design categories and sub-

categories as appropriate.

The fourth stage consisted of the item writing process. More specifically, once the category

headers for various course design features were identified, we began to develop items under

each domain.

In the fifth stage we randomly selected two syllabi to undergo review. Four researchers on

the team examined the same two syllabi to determine if items needed to be refined. Interrater

reliability prior to refinement of the coding schema was at κ = 0.547, indicating moderate

agreement, using the Kappa coefficient derived from Davies and Fleiss’ recommendation for a

fully-crossed design with three or more coders [60, 61].

In the sixth stage we further refined items that exhibited low reliability to finalize the coding

rubric. This led to an improved interrater reliability of κ = 0.678 representing substantial

agreement [61]. Afterwards, all course syllabi were split among the four researchers who devel-

oped the coding rubric, and subsequently coded according to revised coding rubric.

Measures

Qualitative syllabi measures. The coding rubric includes a total of 23 items; however,

only 22 were deemed relevant for science syllabi (one item pertained to the discussion of sensi-

tive social issues, which we found to be largely absent in the examined science courses). All

items are nested within the four larger course design categories, namely (a) technology, (b)

course organization, (c) learning objectives and alignment, and (d) interpersonal interactions.

Notably, all individual items were coded as either categorical or dichotomous variables. None

of the items are reverse-coded. Table 1 describes the full coding rubric used in this study.

The descriptive quantitative analysis used sum scores that add each item rating within each

course design category. Then, these sum scores were scaled to a maximum of 100 for each cate-

gory to allow for cross-category comparisons.

Institutional data. This study used student-level institutional variables (Table 2). Vari-

ables included a continuous variable representing students’ course grades (A+, A, A-: 4.0, 4.0,

3,7; B+, B, B-: 3.3, 3.0, 2.7; C+, C, C-: 2.3, 2.0, 1.7; D+, D, D-:1.3, 1.0, 0.7; F: 0.0). Please note

that these grades represent students’ final course grades, which are often a cumulation of dif-

ferent assignments (e.g., quizzes, exams, homework) across the course. While most courses

included information on the grading policies on their course syllabi, the specific grading poli-

cies often vary across courses and instructors as university courses do not usually employ stan-

dardized assessments to measure student performance. Additional continuous variables

included SAT/ACT mathematics score, which was z-score transformed, and the years of

enrollment in college. Categorical student-level variables included gender, underrepresented

racial/ethnic minority status, first-generation college student status, low-income status,

English language learner status, and whether a student is a transfer student.

Analytical methods. To answer RQ1, descriptive analyses illustrate the distributions of

scores across every item and course design category. Also, the additive scores of course design

categories were visualized with a dot chart and examined within and across courses. Finally,

pairwise Pearson’s correlation coefficients between course design category scores were com-

puted and discussed.

To answer RQ2, we used linear regression models with standard errors clustered at the

course level to account for the nesting of students in courses [62]. Note that this analysis is

meant to be exploratory to identify potentially interesting trends and not an attempt at rigor-

ous hypothesis testing. In this exploratory analysis, student grades represent the dependent
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Table 1. Coding rubric.

Technology

T1—Does the instructor provide additional support in response to challenges and affordances of online learning?

3 Highlights characteristics of online courses and provides suggestions for successful online course

participation

2 Highlights characteristics unique to online courses but does not make recommendations on what students

should do

1 No special reminder of online course characteristics (difficulties and affordances)

T2—Does this instructor make efforts to reduce the cost of accessing course materials for students?
3 Instructor directly provides course materials to students for free or at lower costs

2 Instructor mentions cheaper means by which to access or purchase course materials

1 Instructor does not provide information on how to access course materials without excessive costs to students

T3—How does the instructor enable access to technical support?
3 Instructor gives advice on potential technical problems such as accessing course materials (e.g., FAQ, tech

support, clear steps for resolution)

2 Instructor provides information about contact persons if students encounter technical problems

1 Instructor does not provide contact information or FAQs regarding technical issues

T4—Does the course require the use of special technology/software to access course materials (e.g., specific tools,
downloading procedures)? (PLEASE NOTE: Course website does NOT constitute a special technology/software.)
3 No special technology/software needed

2 A single special technology/software needed

1 Multiple special technologies/software needed

N/

A

Information not provided in syllabus

Course Organization

O1—How are required online course components (e.g. content materials, assessments, activities) stored in the course
space?

3 Required online course components are located within a single website/platform

1 Required online course components are located across multiple different websites/platforms

N/

A

Not clear (e.g., information not clearly provided in syllabus)

O2—How clear is the presentation of core components/requirements of the course in general?
3 Very clear presentation (e.g., detailed course calendar, list of grading structure, clearly organized expectations

for assignments, assignments matched with resources needed to complete them)

2 Somewhat clear (e.g., information is in the syllabus but not as straightforward to get; for instance, in a long

paragraph of text and/or in different locations of the syllabus)

1 Not clear (e.g., information is not clearly found in the syllabus, though it may or may not exist on an ancillary

website or document)

O3—Does the course calendar show adjustments in routine course elements (e.g., discussions, weekly assignments)
when introducing non-routine course elements (e.g., quizzes, exams, essays, final projects)?
3 No adjustments visible from information in the syllabus

1 Adjustments visible from information in the syllabus

O4—What kind of “redo opportunities” does the course offer?
3 No redo opportunities offered/mentioned

2 Redo opportunities on routine course elements (e.g., discussions, weekly assignments) OR non-routine course

elements (e.g., quizzes, exams, essays, final projects)

1 Redo opportunities on routine course elements (e.g., discussions, weekly assignments) AND non-routine

course elements (e.g., quizzes, exams, essays, final projects)

O5—Does the course offer extra credit opportunities?
3 The syllabus does not mention extra credit opportunities

1 The course offers some extra credit opportunities to earn additional points and/or to make-up for missed

points

(Continued)
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Table 1. (Continued)

O6—Does the course accept late submissions (excluding rules for special circumstances such as doctor visits or

emergencies)?

3 The course allows late submissions without penalty

2 The course allows late submissions with penalty

1 The course does not allow/mention late submissions

Learning Objectives and Alignment

L1—How does the course promote course navigation of required assignments (e.g., how to complete requirements,
what needs to be done, order to complete them)?
3 Thorough instructions (e.g., organized by weeks or assignment types) for sequence of when and in what order

course elements ought to be completed (beyond listing of due dates)

2 Some instructions for sequence of when and in which order course elements ought to be completed (beyond

listing of due dates)

1 No instructions for sequence of when and in which order course elements ought to be completed (beyond

listing of due dates)

L2—How does the course provide suggestions of successful study behavior and/or study tips (in contrast to course
navigation, study behavior describes “good to do” behavior; examples include spacing of course elements, reviewing
study guide before attempting quiz, etc.)?
3 Thorough recommendations for how students might improve the efficiency of their studying (e.g., spacing,

suggested study resources, peer/instructor help)

2 Some recommendations for how students might improve the efficiency of their studying

1 No recommendations for how students might improve the efficiency of their studying

L3—Are higher level learning objectives described in the course syllabus?
3 Higher level learning objectives are mentioned in the course syllabus

1 Higher level learning objectives are not mentioned in the course syllabus

L4—How much information does the instructor provide with respect to grading?

3 Instructor provides in-depth details on grading with detailed information on performance expectations for

assignments (e.g., specific elements of an assignment)

2 Instructor provides some details on grading with information on performance expectations for assignments

(e.g., some sense of rubric used for grading)

1 Instructor provides cursory details on grading (e.g., only title for assignments)

L5—How much information does the instructor provide with respect to the alignment of course elements (assignments,
discussions, etc.) with overall learning objectives? (Raters must pay attention to multiple places on the syllabus to
determine alignment.)
3 Instructor provides more than one connection of course elements with course objectives

2 Instructor provides one connection of course elements with course objectives

1 Instructor does not help students understand the connection of course elements with course objectives

Interpersonal Interactions

I1 How accessible are instructors to students?
3 Instructor offers pre-scheduled channels for immediate, synchronous interactions (e.g., face-to-face office

hours, discussion sections hosted by instructor—must be on a regular basis)

2 Instructor offers channels for students to reach out to the instructor beyond emails (e.g., monitoring

discussion boards, skype meetings)

1 Instructor offers no information about channels for interactions (e.g., is only available through emails or does

not mention methods of interacting)

I2 How timely do instructors respond to students?

3 Instructors explicitly state the timeframe in which they will respond to student email or discussion posts

1 Instructors do not explicitly state the timeframe in which they will respond to student email or discussion

posts

I3—How does the course orchestrate required student peer-to-peer interaction?

3 Course requires interactions with classmates, focusing on quality of content and participation

2 Course requires interactions with classmates, focusing on participation

1 Course does not require interactions with classmates

(Continued)
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variable. Continuous z-score transformed course design category score variables represent the

independent variables. Covariates include student demographics. Model 1 includes all institu-

tional student-level covariates, whereas Model 2 include all institutional student-level covari-

ates and course design category score independent variables. Of interest are both the

additional percentage of variance explained by inclusion of all four aggregate course design

characteristics and the associations of each course design category with student grades.

Notably, we examine the explained percentages of variance in student scores and the associ-

ations of the course design with student grades for both all students and students historically

underserved in STEM college environments (i.e., first-generation college students, low-income

students, female students, underrepresented minority students). Modeling assumptions were

tested to verify the appropriateness of the models. For instance, the absence of multicollinear-

ity was determined through the calculation of variance inflation factors. This study applied a

Markov Chain Monte Carlo multiple imputation approach with 150 iterations and 200 impu-

tations to address missing data in the covariates [63, 64].

Results

Online course design trends

Course organization. Descriptive information on each item for each course is presented

in the appendix (S1 Table). Course organization items had exceptionally little variance. In all

Table 1. (Continued)

I4—Does the course offer opportunities for non-graded, voluntary student peer-to-peer interaction?

3 Students are afforded opportunities to interact with peers on a regular basis. (e.g., virtual/non-virtual class

meetings, FAQ forums, etc.)

1 Opportunities to interact with peers are unclear

I5—How does the course provide an etiquette for interpersonal interactions?
3 Sets explicit guidelines on how students are expected to interact

2 Offers suggestions (which might be implicit) of how interactions may be improved. Offers few to no explicit

methods of how to enact this

1 Does not include an etiquette for interpersonal interactions

I6—Does the instructor make any mention of how online interactions work differently than face-to-face interactions?
3 Sets explicit guidelines on how students are expected to interact online. Offers explanation on why interacting

with other students online is different than face-to-face

1 Does not contrast online interactions with face-to-face interactions

I7—What is the social presence of the instructor?
3 Indicators of instructor’s unique personality are clearly evident in syllabus presentation (humor, self-

disclosure, tone, graphics give you a sense of who the instructor is) in more than two occasions

2 Indicators of instructor’s personality are present but only in 1–2 occasions

1 No indicators of instructor’s unique personality are present

I8—Does the instructor prepare students for potentially sensitive topics/material/discourses (e.g., race, gender, politics)
presented in the course (if applicable)?�

3 Explicitly prepares students for potentially sensitive course topics (e.g., specifies exactly which course topics

will be sensitive as a forewarning to students)

2 Inexplicitly prepares students for potentially sensitive course topics (e.g., vaguely suggests some course

material may be sensitive)

1 Does not specifically prepare students for potentially sensitive course topics or information not provided in

syllabus

Note.

� Please note that this item is less relevant for syllabi of science courses.

https://doi.org/10.1371/journal.pone.0276839.t001
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11 courses (100%), course materials were stored across multiple websites or platforms includ-

ing Canvas, Applia, Mastering Biology, and Smartwork (O1). Nine of 11 syllabi (82%) did not

mention the availability of redo opportunities (O4), and again 9 of 11 (82%) did not mention

the availability of extra credit opportunities (O5). Eight of 11 syllabi (73%) presented required

course assignments in a way considered “somewhat clear,” indicating that although some com-

bination of assignment descriptions, grade breakdowns, and calendars was present in many

syllabi, a very clear presentation of assignments combining all of these was present in few syl-

labi (O2). Additionally, 10 of 11 syllabi (91%) did not mention adjustments of routine course

elements when introducing non-routine course elements, or else did not provide sufficient

information (e.g., course calendar) to portray this adjustment (O3). Ten of 11 syllabi (91%)

either did not allow or mention late submissions (O6). These results suggest that online course

syllabi do not vary substantially in terms of course organization. Course materials are likely

distributed across multiple websites, with information about required course components pre-

sented somewhat clearly. Syllabi are unlikely to exhibit a relaxed load of smaller, routine

assignments when larger assignments are due (e.g., tests, essays), and are also unlikely to men-

tion policies regarding re-doing work, extra credit, or late submissions.

Learning objectives and alignment. Contrary to course organization, high levels of vari-

ability among syllabi emerged when looking at the presence of learning objectives and their

alignment with required course elements (S1 Table). Whereas most syllabi gave instructions

for a recommend sequence of assignments, several syllabi did provide guidance beyond listing

all due dates (L1). Whereas over half of the syllabi provided thorough recommendations for

how students might improve their study behavior, for instance, offering study resources or

ways to decide if more preparation is needed before an exam, over a third did not offer such

guidance (L2). Just over half of the syllabi mentioned higher level learning objectives, whereas

the other half did not (L3). Over a third of the syllabi offered in-depth details on the overall

grading and rubrics for specific assignments, whereas about half provided no more informa-

tion than assignments titles and due dates (L4). Finally, roughly half of the syllabi explicitly

connected course requirements with course objectives whereas the other half did not (L5). In

sum, instructors present very different amounts of explicit information regarding the learning

objectives of their course and their expectations for assignment completion, with some thor-

oughly detailing their expectations for grading and rationales for required assignments and

others simply not mentioning what the goals of the course are or what to expect from the

assignments therein.

Table 2. Descriptive information.

N Mean/Percentage SD

Course grades 635 2.60 1.06

Female 634 62.15%

Underrepresented minority 620 22.42%

First-generation college student 604 43.05%

Low-income student 626 34.98%

English language learner 626 34.98%

Transfer student 634 8.52%

SAT/ACT mathematics score† 584 81.78 10.65

Years enrolled in college 635 2.07 1.24

Note.
†SAT/ACT scores are transformed to a 30–100 scale according to institutional guidelines.

https://doi.org/10.1371/journal.pone.0276839.t002
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Interpersonal interactions. Across these online course syllabi, there appeared to be con-

sistency in some forms of interpersonal interaction, but much more heterogeneity in others

(S1 Table). For example, almost all syllabi (82%) mentioned the availability of regularly sched-

uled interactions with the instructor such as face-to-face office hours or online office hours

(I1). Similarly, almost all syllabi (91%) specified that students would have regular opportunities

to voluntarily interact with peers through discussion forums or class meetings (I4). Conversely,

very few syllabi (27%) explicitly stated the timeframe in which students could expect the

instructor to respond to student emails or discussion posts (I2). Analysis of all 11 syllabi

revealed that the possibility of preparing students for sensitive topics was “not applicable,” sug-

gesting the topics of the course did not require discussion of sensitive topics (I8).

Other interpersonal interactions items differed across courses. Just over a half of the syllabi

(55%) did not require interacting with classmates through discussion posts or groupwork (I3).

Of the five that required peer interactions, four emphasized that grading would be based on

quality of content and participation, rather than on participation alone. Just under half of the

syllabi (45%) did not include any notes about etiquette for interpersonal interactions (I5). Of

the six courses including etiquette notes, often in a section titled “netiquette,” two syllabi

offered specific examples of how to interact (or not interact) with classmates. Similarly, just

over half the syllabi (55%) did not explicitly mention that students should be aware of how

online interactions can work differently from face-to-face interactions, whereas the remaining

syllabi did (I6). Finally, instructors evoked very different levels of social presence through their

syllabi (I7). Just over half (55%) gave at least some indication of the instructor’s unique person-

ality or tone through deliberately placed punctuation (e.g., exclamation points) or text empha-

sis tools (e.g., bolding, capital letters, underlining). Of those six syllabi, four included only up

to two examples of this, but two syllabi exuded the instructor’s tone and personality through

several examples throughout the syllabi. Overall, syllabi consistently provide opportunities for

interacting with the teacher and classmates throughout the term, but less consistently provide

guidelines for how to interact.

Technology. Finally, high levels of variation appeared regarding the technological affor-

dances in the course syllabi (S1 Table). Almost all syllabi (91%) highlighted the unique chal-

lenges and affordances of online courses in some way (T1). Seven of those 10 syllabi provided

suggestions about how to specifically change behavior in online courses to increase success

(e.g., the advantages of altering communication when conducted online), whereas three made

only mentioned that students should prepare for difference in the online environment com-

pared to typical face-to-face experiences. Just over half (55%) of syllabi pointed out cheaper

means to access or purchase course materials (T2). Just over half (55%) provided no informa-

tion on contact information or FAQs regarding technical issues (T3). Of those that did, two

provided basic contact information for when problems arise, and three gave specific advice on

potential technical problems. Finally, syllabi were split in mentioning specialized technologies

required for the course (T4). About a third (36%) required at least two additional special soft-

ware or web services on top of the course website (e.g., ProctorU, ALEKS). Another third

(36%) required a single additional software or web service, whereas the remaining syllabi

(27%) required only the course website. Overall, these syllabi suggest that technological

requirements can be very different across courses, as well as the recommendations that

instructors provide for navigating, purchasing, and troubleshooting those technologies.

Aggregate course design characteristics

Descriptive analysis of the aggregate course design characteristics across courses indicates that

highest and lowest rated design category varied across courses (Fig 1).
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There seemed to be no consistent trend among design features that were higher rated in the

course syllabi included in this study. For instance, whereas Learning Objectives and Alignment

is the highest rated design characteristic in courses 8, 10, and 11, it represented the lowest

rated design characteristic in courses 2, 3, 7, and 9. Interpersonal Interactions was the highest

rated design characteristic in courses 5, 7, and 9, but the lowest rated design characteristic in

courses 1, 4, and 6. Technology was the highest rated design characteristic in courses 1, 4, and

6, but the lowest rated design characteristic in courses 5, 8, and 10. Meanwhile, Course Organi-

zation was almost always between other quality categories. This large amount of course-level

heterogeneity among the four quality categories is mirrored in an analysis of Pearson’s pair-

wise correlation coefficients (Table 3). Notably, all four categories were positively associated

Fig 1. Ratings of the design characteristics by course. Please note that in a few cases, multiple categories have identical scores leading to obscured

data points. In such cases, please consult the raw data in the appendix (S2 Table).

https://doi.org/10.1371/journal.pone.0276839.g001

Table 3. Pairwise Pearson’s correlation of course design characteristics.

Technology Course organization Learning objectives and alignment Interpersonal interactions

Technology 1

Course organization 0.287 1

Learning objectives and alignment 0.228 0.131 1

Interpersonal interactions 0.039 0.308 0.266 1

https://doi.org/10.1371/journal.pone.0276839.t003
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with each other. However, the strength of all pairwise correlations were below a moderate

effect size. Notably, the correlation between Course Organization and Learning Objectives and

Alignment (r = 0.131) and the correlation between Technology and Interpersonal Interactions

(r = 0.039) were below recommended minimum effect sizes [65].

Associations of course design characteristics with performance

Multiple linear regression models explored associations of the course design characteristics

with student performance (Table 4). Subgroup analyses of students who are historically under-

served in college examined potential heterogeneity in the estimates.

The inclusion of the four course design characteristics variables in the full sample regression

models led to a 6.2% increase in the explained percentage of variance of student grades (Model

1: R2 = 0.086, Model 2: R2 = 0.148). This increase in the explained percentage of variance in

student grades was even greater for student groups who are historically underserved in college,

with a 14.7% increase for first-generation college students (Model 1: R2 = 0.106, Model 2: R2 =

0.253), an 11.3% increase for low-income students (Model 1: R2 = 0.167, Model 2: R2 = 0.280),

a 9.8% increase for female students (Model 1: R2 = 0.089, Model 2: R2 = 0.187), and a 15.2%

increase for underrepresented minority students (Model 1: R2 = 0.094, Model 2: R2 = 0.246).

The regression models provided some indication of design characteristics that may be asso-

ciated with student grades. In the full sample, each standard deviation increase in the Course

Organization rating was associated with a 0.15 letter grade increase, b = 0.153, t = 2.79,

p< 0.05. In contrast, each standard deviation increase in the Learning Objectives and Align-

ment rating was associated with a 0.26 letter grade decrease, b = -0.258, t = -2.60, p< 0.05.

Notably, both Technology and Interpersonal Interactions course design ratings were not sig-

nificantly associated with students’ grades.

Heterogeneity analysis on student groups who are traditionally underserved in college indi-

cated similar trends. Both Technology and Interpersonal Interactions course design ratings

were consistently not associated with students’ course grades across all models. Similarly, the

Course Organization rating had a consistent significant association with student course grades.

Each standard deviation increase in the Course Organization rating was associated with a 0.30

letter grade increase for first-generation college students, b = 0.298, t = 3.18, p< 0.05; a 0.24

Table 4. Multiple linear regression analysis on student grades with clustered standard errors, N = 635.

Model 1 Model 2

Coef SE t p Coef SE t p

Intercept 2.988 0.152 19.61 <0.001 2.843 0.164 17.30 <0.001

Technology -0.054 0.073 -0.73 0.482

Course organization 0.153 0.055 2.79 0.023

Learning objectives and alignment -0.258 0.099 -2.60 0.030

Interpersonal interactions 0.103 0.074 1.39 0.201

Female -0.005 0.089 -0.06 0.956 -0.034 0.064 -0.52 0.615

Underrepresented minority -0.186 0.117 -1.59 0.149 -0.170 0.131 -1.30 0.229

First-generation college student -0.183 0.114 -1.61 0.146 -0.149 0.096 -1.56 0.159

Low-income student 0.088 0.063 1.39 0.205 0.081 0.055 1.48 0.181

English language learner -0.122 0.094 -1.30 0.229 -0.089 0.092 -0.96 0.364

SAT/ACT mathematics score 0.172 0.047 3.66 0.007 0.189 0.037 5.15 0.002

Transfer student -0.239 0.217 -1.10 0.302 -0.154 0.222 -0.69 0.507

Years enrolled in college -0.109 0.054 -2.02 0.077 -0.084 0.049 -1.73 0.120

R2 0.086 0.148

https://doi.org/10.1371/journal.pone.0276839.t004
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letter grade increase for low-income students, b = 0.243, t = 4.32, p< 0.01; a 0.20 letter grade

increase for female students, b = 0.199, t = 2.81, p< 0.05; and a 0.48 letter grade increase for

underrepresented minority students, b = 0.481, t = 7.28, p< 0.001. Similarly, the Learning

Objectives and Alignment rating was negatively associated with student course grades for stu-

dents who are traditionally underserved in college. Each standard deviation increase in the

Learning Objectives and Alignment rating was associated with a 0.34 letter grade decrease for

first-generation college students, b = -0.341, t = -2.96, p< 0.05; a 0.36 letter grade decrease for

low-income students, b = -0.355, t = -4.72, p< 0.01; and a 0.30 letter grade decrease for female

students, b = -0.298, t = -3.08, p< 0.05. The appendix includes a table with all regression coef-

ficients (S3 Table).

Discussion

This mixed-methods study describes the qualitative development of a rubric that identifies syl-

labi-derived course design characteristics of college-level science online courses. This study is

positioned to contribute to the research base on online learning in higher education as it repre-

sents one of the first efforts to systematically utilize course syllabi to generate inferences on the

quality of online course instruction and student learning. In contrast to more resource-inten-

sive course observations [66, 67], course syllabi and institutional data are more readily avail-

able at colleges [68–71]. Therefore, this study can provide insights on how universities could

apply syllabi-based rubrics to generate inferences for educational policies, for instance, when

deciding what courses to keep in an online format after the Covid-19 pandemic [72], or in an

effort to use predictive analytics to enhance learning outcomes [73–75]. Instead of traditional

early warning systems that intend to identify at-risk students using institutional data during a

college career and/or clickstream data during a specific course [74, 76, 77], syllabi-based early

warning systems would identify courses not leveraging the affordances of online learning, and

could be addressed even before students are exposed to the instructional enactments. In partic-

ular, this also contrasts research assessing teaching quality through course evaluations [78]. In

consequence, the three main findings are as follows:

First, course syllabi allow for an identification of online course design characteristics. In

particular, it is possible to use course syllabi to detect course design categories related to Tech-

nology, Course Organization, Learning Objectives and Alignment, and Interpersonal Interac-

tions, which were also used in observational studies [15]. Interestingly, there were no

consistent trends across all courses in this study; for instance, we did not find that certain

course design categories had consistently higher ratings than other design categories. In addi-

tion, the course design characteristics were not substantially correlated with each other. This

indicates that these four categories can be viewed as distinct categories, which should not be

collapsed in subsequent analyses.

Second, the syllabi-derived online course design characteristics can explain some variance

in student grades. Although, prior performance is a considerably better predictor of student

performance–as one would expect [79, 80]–it is still promising that a comparatively low-cost

effort of examining course syllabi may provide additional insights in explaining student-level

learning outcomes. In comparison, classroom observations are often resource-intensive while

not necessarily providing valid and reliable estimates of student learning [18, 67]. Further-

more, in contrast to classroom observations, which occur during a term, syllabi can be col-

lected before a term begins, allowing for identification of course design weaknesses before

students are exposed to the course.

Third, the explorative analysis of design characteristics and student performance provides

first indications that higher ratings on the Course Organization design characteristics may to
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be related to greater student performance. Notably, Course Organization refers to the clarity

and consistency of the navigational structure, for instance, through a clear presentation of core

components and requirements of the course. This finding would be in line with prior research

that suggests that students tend to struggle in online courses due to lower self-regulation skills

[12–14]. In courses with more transparent course organization, instructors may be able to bet-

ter support their students’ self-regulatory skills [81].

Limitations and future work

The largest limitation of this study is the assumption that the content in syllabi directly trans-

lates to instructional practice, and ultimately student learning experiences. Validation studies

are highly encouraged to confirm sufficient accuracy of course syllabi compared to the current

gold standard of course observations. This is mirrored in this study’s relatively large percent-

age of unexplained variance in student grades. Although the inclusion of online course design

characteristics improved the percentage of explained variance, many potentially important

constructs that relate to student learning and performance were not captured. These may

include variables on student’s motivation, beliefs, and goals, self-regulation, and study skills

[45, 47, 81–84]. Similarly, many teacher and teaching characteristics influence learning includ-

ing teachers’ knowledge, teaching experience, and instructional practices [80, 85–89]. How-

ever, these variables are not easily available at-scale to institutions without an additional

resource-intensive data collection. The goal of the paper was to utilize data that are readily

available to universities without an additional resource-intensive data collection.

The second important limitation of this study is the small sample size, and thus limited sta-

tistical power [90], of examined course syllabi. While this sample size is sufficient to develop

the coding rubric, inferences from the quantitative analysis need to be interpreted with cau-

tion. Robust hypothesis testing is limited due to the small statistical power as the source of vari-

ation for related hypotheses comes from between-course differences. Although this small

sample size does not allow us to employ advanced quantitative modeling to thoroughly exam-

ine the impact of course design characteristics on student performance, its descriptive and

exploratory nature represents a first step in the research process providing insights to inform

future research.

Another limitation of this study is related to the analyzed scope of course syllabi. On the

one hand, we capture a range of different aspects of constructs related to online course design.

To keep the coding scheme manageable, we measure most aspects (e.g., social presence) within

a construct (e.g., interpersonal interaction) with single items. A study focusing on a particular

aspect of online course design (for instance, to examine the social presence in a course [91])

would need to substantially increase the item count needed to comprehensibly map the related

features (e.g., also include items related to affective responses and cohesive responses related to

social presence). On the other hand, this study only examined course syllabi in undergraduate

online courses in science disciplines. In particular, this study reviewed online course syllabi in

only biological science and physics. While it may seem reasonable to believe that similar trends

would be identified in chemistry online courses [92, 93], extensions to other STEM and non-

STEM disciplines are unclear. Similarly, this study was situated at a large public research uni-

versity. In order to generalize findings, replication studies in other contexts with other student

demographics are encouraged.

Potential future research directions that use syllabi-derived course design characteristics

may ascertain whether these design characteristics help explain differences in student learning

across face-to-face and online versions of the same course. The most carefully controlled study

would include only courses that had the same instructor for both modalities. However, we
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would have to consider selection effects and the discipline of the subject. An ideal sample

would intentionally balance an equal number of courses that are better and worse than their

respective face-to-face counterparts. Another direction for research relates to the rise of educa-

tional data mining and learning analytics research focused on corpora of writing [69, 94, 95].

These developments have inspired researchers to use college course syllabi as a data source to

better understand teaching and learning. For instance, a current research project led by Peter

Bearman at Columbia utilizes machine learning, natural language processing, and social net-

work analysis techniques to examine text corpora of hundreds of thousands of syllabi from

universities all across the country to generate multidimensional measures of “liberal artsness”

of student college experiences and their relations to post-graduation outcomes [96]. Similar to

Peter Bearman’s work, future research could apply deep learning and machine learning algo-

rithms on a corpus of historic course syllabi to detect underlying online course design features

that are associated with student performance. Afterwards, the classification of course syllabi

could be automated for any new syllabi so that this tool could serve as an early detection sys-

tem for departments and administrators to identify courses and instructors that may benefit

from additional institutional support. Furthermore, future research may also compare and

psychometrically validate the myriad on available online course design tools (for an overview,

see [97]) to help guide higher education administration on the best instruments for their indi-

vidual contexts and use cases.
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